Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States

被引:8
|
作者
Carlen, Eric A. [1 ]
Lieb, Elliott H. [2 ]
Reuvers, Robin [3 ]
机构
[1] Rutgers State Univ, Hill Ctr, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Princeton Univ, Dept Math & Phys, Jadwin Hall,Washington Rd, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Phys, Jadwin Hall,Washington Rd, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Entropy; Density Matrix; Mutual Information; Reduce Density Matrix; Fermionic State;
D O I
10.1007/s00220-016-2651-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Unlike bosons, fermions always have a non-trivial entanglement. Intuitively, Slater determinantal states should be the least entangled states. To make this intuition precise we investigate entropy and entanglement of fermionic states and prove some extremal and near extremal properties of reduced density matrices of Slater determinantal states.
引用
收藏
页码:655 / 671
页数:17
相关论文
共 23 条
  • [1] Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States
    Eric A. Carlen
    Elliott H. Lieb
    Robin Reuvers
    Communications in Mathematical Physics, 2016, 344 : 655 - 671
  • [2] Bounds for Entanglement via an Extension of Strong Subadditivity of Entropy
    Carlen, Eric A.
    Lieb, Elliott H.
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 101 (01) : 1 - 11
  • [3] Bounds for Entanglement via an Extension of Strong Subadditivity of Entropy
    Eric A. Carlen
    Elliott H. Lieb
    Letters in Mathematical Physics, 2012, 101 : 1 - 11
  • [4] Bounds on corner entanglement in quantum critical states
    Bueno, Pablo
    Witczak-Krempa, William
    PHYSICAL REVIEW B, 2016, 93 (04)
  • [5] Reduced density matrices - Then and now
    Coleman, AJ
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2001, 85 (4-5) : 196 - 203
  • [6] Entropy of entanglement and multifractal exponents for random states
    Giraud, O.
    Martin, J.
    Georgeot, B.
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [7] Eigenvalue Distributions of Reduced Density Matrices
    Matthias Christandl
    Brent Doran
    Stavros Kousidis
    Michael Walter
    Communications in Mathematical Physics, 2014, 332 : 1 - 52
  • [8] Spectral properties of reduced fermionic density operators and parity superselection rule
    Grigori G. Amosov
    Sergey N. Filippov
    Quantum Information Processing, 2017, 16
  • [9] Symmetry breaking and the geometry of reduced density matrices
    Zauner, V.
    Draxler, D.
    Vanderstraeten, L.
    Haegeman, J.
    Verstraete, F.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [10] Spectral properties of reduced fermionic density operators and parity superselection rule
    Amosov, Grigori G.
    Filippov, Sergey N.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (01)