Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning

被引:19
作者
Adibi, Pedram [1 ]
Pranovi, Fabio [2 ]
Raffaeta, Alessandra [2 ]
Russo, Elisabetta [2 ]
Silvestri, Claudio [2 ]
Simeoni, Marta [2 ]
Soares, Amilcar [1 ]
Matwin, Stan [1 ,3 ]
机构
[1] Dalhousie Univ, Inst Big Data Analyt, Halifax, NS, Canada
[2] Univ Ca Foscari Venezia, Dipartimento Sci Ambientali Informat & Stat, Venice, Italy
[3] Polish Acad Sci, Warsaw, Poland
来源
MULTIPLE-ASPECT ANALYSIS OF SEMANTIC TRAJECTORIES | 2020年 / 11889卷
基金
加拿大自然科学与工程研究理事会; 欧盟地平线“2020”;
关键词
Spatio-temporal data; Fisheries; Machine Learning; Semantic trajectories; AIS; GROUNDS;
D O I
10.1007/978-3-030-38081-6_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we explore a unique, high-value spatio-temporal dataset that results from the fusion of three data sources: trajectories from fishing vessels (obtained from terrestrial Automatic Identification System, or AIS, data feed), the corresponding fish catch reports (i.e., the quantity and type of fish caught), and relevant environmental data. The result of that fusion is a set of semantic trajectories describing the fishing activities in Northern Adriatic Sea over two years. We present early results from an exploratory analysis of these semantic trajectories, as well as from initial predictive modeling using Machine Learning. Our goal is to predict the Catch Per Unit Effort (CPUE), an indicator of the fishing resources exploitation useful for fisheries management. Our predictive results are preliminary in both the temporal data horizon that we are able to explore and in the limited set of learning techniques that are employed on this task. We discuss several approaches that we plan to apply in the near future to learn from such data, evidence, and knowledge that will be useful for fisheries management. It is likely that other centers of intense fishing activities are in possession of similar data and could use the methods similar to the ones proposed here in their local context.
引用
收藏
页码:83 / 99
页数:17
相关论文
共 22 条
[1]   ERROR MEASURES FOR GENERALIZING ABOUT FORECASTING METHODS - EMPIRICAL COMPARISONS [J].
ARMSTRONG, JS ;
COLLOPY, F .
INTERNATIONAL JOURNAL OF FORECASTING, 1992, 8 (01) :69-80
[2]   CONSTAnT - A Conceptual Data Model for Semantic Trajectories of Moving Objects [J].
Bogorny, Vania ;
Renso, Chiara ;
de Aquino, Artur Ribeiro ;
Siqueira, Fernando de Lucca ;
Alvares, Luis Otavio .
TRANSACTIONS IN GIS, 2014, 18 (01) :66-88
[3]   Habitat Selection Response of Small Pelagic Fish in Different Environments. Two Examples from the Oligotrophic Mediterranean Sea [J].
Bonanno, Angelo ;
Giannoulaki, Marianna ;
Barra, Marco ;
Basilone, Gualtiero ;
Machias, Athanassios ;
Genovese, Simona ;
Goncharov, Sergey ;
Popov, Sergey ;
Rumolo, Paola ;
Di Bitetto, Massimiliano ;
Aronica, Salvatore ;
Patti, Bernardo ;
Fontana, Ignazio ;
Giacalone, Giovanni ;
Ferreri, Rosalia ;
Buscaino, Giuseppa ;
Somarakis, Stylianos ;
Pyrounaki, Maria-Myrto ;
Tsoukali, Stavroula ;
Mazzola, Salvatore .
PLOS ONE, 2014, 9 (07)
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[6]   Ontology-Based Data Access for Maritime Security [J].
Brueggemann, Stefan ;
Bereta, Konstantina ;
Xiao, Guohui ;
Koubarakis, Manolis .
SEMANTIC WEB: LATEST ADVANCES AND NEW DOMAINS, 2016, 9678 :741-757
[7]  
Copernicus, EUR EYES EARTH
[8]   Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning [J].
de Souza, Erico N. ;
Boerder, Kristina ;
Matwin, Stan ;
Worm, Boris .
PLOS ONE, 2016, 11 (07)
[9]   Ensemble methods in machine learning [J].
Dietterich, TG .
MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 :1-15
[10]   Seasonal forecasting of tuna habitat in the Great Australian Bight [J].
Eveson, J. Paige ;
Hobday, Alistair J. ;
Hartog, Jason R. ;
Spillman, Claire M. ;
Rough, Kirsten M. .
FISHERIES RESEARCH, 2015, 170 :39-49