Support Function of Pythagorean Hodograph Cubics and G1 Hermite Interpolation

被引:0
|
作者
Cernohorska, Eva [1 ]
Sir, Zbynek [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
SURFACES; CURVES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Tschirnhausen cubic represents all non-degenerate Pythagorean Hododgraph cubics. We determine its support function and represent it as a convolution of a centrally symmetrical curve and a curve with linear normals. We use the support function to parametrize the Tschirnhausen cubic by normals. This parametrization is then used to an elegant and complete solution of the G(1) Hermite interpolation by Pythagorean Hodograph cubics. We apply the resulting algorithm to various examples and extend it to the interpolation by offsets of PH cubics.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [41] Interactive G1 and G2 Hermite Interpolation Using Coupled Log-aesthetic Curves
    Nagy F.
    Yoshida N.
    Hoffmann M.
    Computer-Aided Design and Applications, 2022, 19 (06): : 1216 - 1235
  • [42] G1 INTERPOLATION OF MESH CURVES
    LIU, QL
    SUN, TC
    COMPUTER-AIDED DESIGN, 1994, 26 (04) : 259 - 267
  • [43] Flexible G1 interpolation of quad meshes
    Bonneau, Georges-Pierre
    Hahmann, Stefanie
    GRAPHICAL MODELS, 2014, 76 : 669 - 681
  • [44] Shape interpolating geometric G1 Hermite curves
    Zhang, Aiwu
    Zhang, Caiming
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2007, 19 (04): : 454 - 459
  • [45] G1-Hermite interpolation of ruled surfaces
    Peternell, M
    MATHEMATICAL METHODS FOR CURVES AND SURFACES: OSLO 2000, 2001, : 413 - 422
  • [46] Hermite G1 rational spline motion of degree six
    Karla Počkaj
    Numerical Algorithms, 2014, 66 : 721 - 739
  • [47] G1 interpolation with a single Cornu spiral segment
    Walton, D. J.
    Meek, D. S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) : 86 - 96
  • [48] Geometric interpolation by planar cubic G1 splines
    Kozak, Jernej
    Krajnc, Marjetka
    BIT NUMERICAL MATHEMATICS, 2007, 47 (03) : 547 - 563
  • [49] Geometric interpolation by planar cubic G1 splines
    Jernej Kozak
    Marjetka Krajnc
    BIT Numerical Mathematics, 2007, 47 : 547 - 563
  • [50] G1 surface interpolation for irregularly located data
    Kohei, M
    Kokich, S
    GEOMETRIC MODELING AND PROCESSING: THEORY AND APPLICATIONS, PROCEEDINGS, 2002, : 187 - 196