Support Function of Pythagorean Hodograph Cubics and G1 Hermite Interpolation

被引:0
|
作者
Cernohorska, Eva [1 ]
Sir, Zbynek [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
SURFACES; CURVES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Tschirnhausen cubic represents all non-degenerate Pythagorean Hododgraph cubics. We determine its support function and represent it as a convolution of a centrally symmetrical curve and a curve with linear normals. We use the support function to parametrize the Tschirnhausen cubic by normals. This parametrization is then used to an elegant and complete solution of the G(1) Hermite interpolation by Pythagorean Hodograph cubics. We apply the resulting algorithm to various examples and extend it to the interpolation by offsets of PH cubics.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [31] Two-point G1 Hermite interpolation in biangular coordinates
    Ziatdinov, Rushan
    Kim, Tae-wan
    Nabiyev, Rifkat I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 287 : 1 - 11
  • [32] C2 Hermite interpolation by Minkowski Pythagorean hodograph curves and medial axis transform approximation
    Kosinka, Jiri
    Sir, Zbynek
    COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (08) : 631 - 643
  • [33] Singular cases of planar and spatial C1 Hermite interpolation problems based on quintic Pythagorean-hodograph curves
    Farouki, Rida T.
    Hormann, Kai
    Nudo, Federico
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 82
  • [34] C-1 comonotone hermite interpolation via parametric cubics
    Manni, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 69 (01) : 143 - 157
  • [35] ON INTERPOLATION BY PLANAR CUBIC G2 PYTHAGOREAN-HODOGRAPH SPLINE CURVES
    Jaklic, Gasper
    Kozak, Jernej
    Krajnc, Marjeta
    Vitrih, Vito
    Zagar, Emil
    MATHEMATICS OF COMPUTATION, 2010, 79 (269) : 305 - 326
  • [36] Pythagorean hodograph spline spirals that match G3 Hermite data from circles
    Li, Zhong
    Ait-Haddou, Rachid
    Biard, Luc
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 278 : 162 - 180
  • [37] G1 Hermite interpolation method for spatial PH curves with PH planar projections
    Song, Yoonae
    Kim, Soo Hyun
    Moon, Hwan Pyo
    COMPUTER AIDED GEOMETRIC DESIGN, 2022, 97
  • [38] Hermite and Lagrange interpolation in Rd by G1 cubic splines with small strain energy
    Jaklic, Gasper
    Kanduc, Tadej
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (03) : 257 - 270
  • [39] Geometric interpolation of ER frames with G2 Pythagorean-hodograph curves of degree 7
    Knez, Marjeta
    Sampoli, Maria Lucia
    COMPUTER AIDED GEOMETRIC DESIGN, 2021, 88
  • [40] Length and curvature variation energy minimizing planar cubic G1 Hermite interpolation curve
    Li, Juncheng
    Zhang, Li
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 60 - 64