The Tschirnhausen cubic represents all non-degenerate Pythagorean Hododgraph cubics. We determine its support function and represent it as a convolution of a centrally symmetrical curve and a curve with linear normals. We use the support function to parametrize the Tschirnhausen cubic by normals. This parametrization is then used to an elegant and complete solution of the G(1) Hermite interpolation by Pythagorean Hodograph cubics. We apply the resulting algorithm to various examples and extend it to the interpolation by offsets of PH cubics.
机构:
Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math, Seoul 151747, South Korea
机构:
King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi ArabiaKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
Ait-Haddou, Rachid
论文数: 引用数:
h-index:
机构:
Beccari, Carolina Vittoria
Mazure, Marie-Laurence
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, Lab Jean Kuntzmann, CNRS, UMR 5224, F-38000 Grenoble, FranceKing Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
机构:
Univ Polytech Hauts de France, CERAMATHS, FR CNRS 2037, F-59313 Valenciennes, FranceUniv Polytech Hauts de France, CERAMATHS, FR CNRS 2037, F-59313 Valenciennes, France
Bay, Thierry
Cattiaux-Huillard, Isabelle
论文数: 0引用数: 0
h-index: 0
机构:
Univ Polytech Hauts de France, CERAMATHS, FR CNRS 2037, F-59313 Valenciennes, FranceUniv Polytech Hauts de France, CERAMATHS, FR CNRS 2037, F-59313 Valenciennes, France
Cattiaux-Huillard, Isabelle
论文数: 引用数:
h-index:
机构:
Romani, Lucia
Saini, Laura
论文数: 0引用数: 0
h-index: 0
机构:
Univ Polytech Hauts de France, CERAMATHS, FR CNRS 2037, F-59313 Valenciennes, France
Junia, Comp Sci & Math, F-59000 Lille, FranceUniv Polytech Hauts de France, CERAMATHS, FR CNRS 2037, F-59313 Valenciennes, France