Random orderings and unique ergodicity of automorphism groups

被引:25
作者
Angel, Omer [1 ]
Kechris, Alexander S. [2 ]
Lyons, Russell [3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
[3] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Graphs; hypergraphs; the random graph; metric spaces; Fraisse; Ramsey; minimal flow; Urysohn space; EXTENDING PARTIAL ISOMORPHISMS; METRIC-SPACES; RAMSEY THEORY;
D O I
10.4171/JEMS/483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the only random orderings of finite graphs that are invariant under isomorphism and induced subgraph are the uniform random orderings. We show how this implies the unique ergodicity of the automorphism group of the random graph. We give similar theorems for other structures, including, for example, metric spaces. These give the first examples of uniquely ergodic groups, other than compact groups and extremely amenable groups, after Glasner and Weiss's example of the group of all permutations of the integers. We also contrast these results to those for certain special classes of graphs and metric spaces in which such random orderings can be found that are not uniform.
引用
收藏
页码:2059 / 2095
页数:37
相关论文
共 27 条
[1]  
[Anonymous], 2003, Ergodic theory via joinings
[2]  
Becker H., 1996, LONDON MATH SOC LECT, V232
[3]  
Bekka B., 2008, NEW MATH MONOGRAPHS, V11
[4]  
Fraisse R., 1954, Ann. Sci. Ecole Norm. Sup., V71, P363
[5]   The universal minimal system for the group of homeomorphisms of the Cantor set [J].
Glasner, E ;
Weiss, B .
FUNDAMENTA MATHEMATICAE, 2003, 176 (03) :277-289
[6]  
Glasner E, 2002, GEOM FUNCT ANAL, V12, P964, DOI 10.1007/PL00012651
[7]   EXTENDING PARTIAL ISOMORPHISMS ON FINITE STRUCTURES [J].
HERWIG, B .
COMBINATORICA, 1995, 15 (03) :365-371
[8]   Extending partial isomorphisms for the small index property of many ω-categorical structures [J].
Herwig, B .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 107 (1) :93-123
[9]  
Hodges W., 1993, Model Theory, DOI [DOI 10.1017/CBO9780511551574, 10.1017/cbo9780511551574]
[10]   EXTENDING PARTIAL ISOMORPHISMS OF GRAPHS [J].
HRUSHOVSKI, E .
COMBINATORICA, 1992, 12 (04) :411-416