Quantum Cryptography, Quantum Communication, and Quantum Computer in a Noisy Environment

被引:4
作者
Nagata, Koji [1 ]
Nakamura, Tadao [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[2] Keio Univ, Dept Informat & Comp Sci, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
关键词
Quantum computation; Quantum cryptography; Quantum communication; REALISTIC LEGGETT MODELS; BEFORE-BEFORE EXPERIMENT; ALGORITHM; IMPLEMENTATION; THEOREM;
D O I
10.1007/s10773-017-3352-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
First, we study several information theories based on quantum computing in a desirable noiseless situation. (1) We present quantum key distribution based on Deutsch's algorithm using an entangled state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum communication including an error correction. Finally, we discuss the main result. We study the Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless function. Here we consider the case that the function has an environmental noise. We introduce a noise term into the function f(x). So we have another noisy function g(x). The relation between them is g(x) = f (x) +/- O(epsilon). Here O(epsilon) << 1 is the noise term. The goal is to determine the noisy function g(x) with a success probability. The algorithm overcomes classical counterpart by a factor of N in a noisy environment.
引用
收藏
页码:2086 / 2100
页数:15
相关论文
共 29 条
[1]  
[Anonymous], FDN COMP SCI 1994 P
[2]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[3]   Fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits [J].
Brainis, E ;
Lamoureux, LP ;
Cerf, NJ ;
Emplit, P ;
Haelterman, M ;
Massar, S .
PHYSICAL REVIEW LETTERS, 2003, 90 (15) :4
[4]   Experimental falsification of leggett's nonlocal variable model [J].
Branciard, Cyril ;
Ling, Alexander ;
Gisin, Nicolas ;
Kurtsiefer, Christian ;
Lamas-Linares, Antia ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[5]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[6]   Quantum learning robust against noise [J].
Cross, Andrew W. ;
Smith, Graeme ;
Smolin, John A. .
PHYSICAL REVIEW A, 2015, 92 (01)
[7]   Implementing the Deutsch algorithm with polarization and transverse spatial modes [J].
de Oliveira, AN ;
Walborn, SP ;
Monken, CH .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (09) :288-292
[8]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117
[9]   Implementation of a quantum algorithm to solve the Bernstein-Vazirani parity problem without entanglement on an ensemble quantum computer [J].
Du, JF ;
Shi, MJ ;
Zhou, XY ;
Fan, YM ;
Ye, BJ ;
Han, RD ;
Wu, JH .
PHYSICAL REVIEW A, 2001, 64 (04) :5
[10]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663