Surface origin and control of resonance Raman scattering and surface band gap in indium nitride

被引:21
作者
Alarcon-Llado, Esther [1 ,2 ,5 ]
Brazzini, Tommaso [2 ,3 ,4 ]
Ager, Joel W. [2 ]
机构
[1] Swiss Fed Inst Technol EPFL, Lausanne, Switzerland
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Politecn Madrid, ETSI Telecomunicac, Dept Ingn Elect, E-28040 Madrid, Spain
[4] Univ Politecn Madrid, ETSI Telecomunicac, Inst Sistemas Optoelect & Microtecnol, E-28040 Madrid, Spain
[5] FOM Inst AMOLF, Amsterdam, Netherlands
关键词
Raman spectroscopy; indium nitride; surface electron accumulation; ACCUMULATION LAYERS; INN; ELECTRON; RENORMALIZATION; SEMICONDUCTORS;
D O I
10.1088/0022-3727/49/25/255102
中图分类号
O59 [应用物理学];
学科分类号
摘要
Resonance Raman scattering measurements were performed on indium nitride thin films under conditions where the surface electron concentration was controlled by an electrolyte gate. As the surface condition is tuned from electron depletion to accumulation, the spectral feature at the expected position of the (E1, A1) longitudinal optical (LO) near 590 cm(-1) shifts to lower frequency. The shift is reversibly controlled with the applied gate potential, which clearly demonstrates the surface origin of this feature. The result is interpreted within the framework of a Martin double resonance, where the surface functions as a planar defect, allowing the scattering of long wavevector phonons. The allowed wavevector range, and hence the frequency, is modulated by the electron accumulation due to band gap narrowing. A surface band gap reduction of over 500 meV is estimated for the conditions of maximum electron accumulation. Under conditions of electron depletion, the full InN bandgap (Eg = 0.65 eV) is expected at the surface. The drastic change in the surface band gap is expected to influence the transport properties of devices which utilize the surface electron accumulation layer.
引用
收藏
页数:9
相关论文
共 49 条
[31]   High current density InN/AlN heterojunction field-effect transistor with a SiNx gate dielectric layer [J].
Lin, Yu-Syuan ;
Koa, Shun-Hau ;
Chan, Chih-Yuan ;
Hsu, Shawn S. H. ;
Lee, Hong-Mao ;
Gwo, Shangjr .
APPLIED PHYSICS LETTERS, 2007, 90 (14)
[32]   Surface chemical modification of InN for sensor applications [J].
Lu, H ;
Schaff, WJ ;
Eastman, LF .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (06) :3577-3579
[33]   Surface charge accumulation of InN films grown by molecular-beam epitaxy [J].
Lu, H ;
Schaff, WJ ;
Eastman, LF ;
Stutz, CE .
APPLIED PHYSICS LETTERS, 2003, 82 (11) :1736-1738
[34]   InN-based anion selective sensors in aqueous solutions [J].
Lu, Yen-Sheng ;
Huang, Chi-Cheng ;
Yeh, J. Andrew ;
Chen, Chi-Fan ;
Gwo, Shangjr .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[35]   Investigation on -c-InN and a-InN:Mg field effect transistors under electrolyte gate bias [J].
Lu, Yen-Sheng ;
Chang, Yuh-Hwa ;
Hong, Yu-Liang ;
Lee, Hong-Mao ;
Gwo, Shangjr ;
Yeh, J. Andrew .
APPLIED PHYSICS LETTERS, 2009, 95 (10)
[36]   Intrinsic electron accumulation at clean InN surfaces [J].
Mahboob, I ;
Veal, TD ;
McConville, CF ;
Lu, H ;
Schaff, WJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (03) :4
[37]   RESONANCE RAMAN-SCATTERING NEAR CRITICAL-POINTS [J].
MARTIN, RM .
PHYSICAL REVIEW B, 1974, 10 (06) :2620-2631
[38]   Hole transport and photoluminescence in Mg-doped InN [J].
Miller, N. ;
Ager, J. W., III ;
Smith, H. M., III ;
Mayer, M. A. ;
Yu, K. M. ;
Haller, E. E. ;
Walukiewicz, W. ;
Schaff, W. J. ;
Gallinat, C. ;
Koblmueller, G. ;
Speck, J. S. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (11)
[39]   Evidence for phonon-plasmon interaction in InN by Raman spectroscopy [J].
Pomeroy, J. W. ;
Kuball, M. ;
Swartz, C. H. ;
Myers, T. H. ;
Lu, H. ;
Schaff, W. J. .
PHYSICAL REVIEW B, 2007, 75 (03)
[40]   Surface optical Raman modes in InN nanostructures [J].
Sahoo, Satyaprakash ;
Hu, M. S. ;
Hsu, C. W. ;
Wu, C. T. ;
Chen, K. H. ;
Chen, L. C. ;
Arora, A. K. ;
Dhara, S. .
APPLIED PHYSICS LETTERS, 2008, 93 (23)