On harmonic numbers and Lucas sequences

被引:15
作者
Sun, Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2012年 / 80卷 / 1-2期
基金
中国国家自然科学基金;
关键词
congruences; harmonic numbers; Lucas sequences;
D O I
10.5486/PMD.2012.4809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Harmonic numbers H-k = Sigma(0 < j <= k) 1/j (k = 0, 1, 2,...) arise naturally in many fields of mathematics. In this paper we initiate the study of congruences involving both harmonic numbers and Lucas sequences. One of our three theorems is as follows: Let u(0) = 0, u(1) = 1, and u(n+1)= for u(n)-4u(n-1) for n= 1,2, 3,.... Then, for any prime p> 5 we have Sigma(k=0) (p-1) H-k /2(k) uk+delta 0 (mod p), where delta = 0 if p 1,2,4,8 (mod 15),and delta = 1 otherwise.
引用
收藏
页码:25 / 41
页数:17
相关论文
共 9 条
[1]  
[Anonymous], 1862, Quart. J. Pure Appl. Math
[2]  
[Anonymous], 1994, FDN COMPUTER SCI
[3]  
Benjamin A. T., 2002, Math. Mag., V75, P95, DOI [10.2307/3219141, DOI 10.1080/0025570X.2002.11953110]
[4]   ON AN INTRIGUING INTEGRAL AND SOME SERIES RELATED TO ZETA(4) [J].
BORWEIN, D ;
BORWEIN, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1191-1198
[5]  
Coffman S. W., 1987, MATH MAG, V60, P118
[6]   On Wolstenholme's theorem and its converse [J].
Helou, Charles ;
Terjanian, Guy .
JOURNAL OF NUMBER THEORY, 2008, 128 (03) :475-499
[7]  
Ribenboim P., 1989, The Book of Prime Number Records, Vsecond
[8]   Values of Lucas sequences modulo primes [J].
Sun, ZH .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (03) :1123-1145
[9]   ARITHMETIC THEORY OF HARMONIC NUMBERS [J].
Sun, Zhi-Wei .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) :415-428