SPARSE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS IN HIGH DIMENSIONS

被引:7
作者
Hu, Xiaoyu [1 ]
Yao, Fang [1 ]
机构
[1] Peking Univ, Ctr Stat Sci, Sch Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Basis expansion; multivariate Karhunen-Loe`ve expansion; sparsity regime; LINEAR-REGRESSION; MODELS;
D O I
10.5705/ss.202020.0445
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Existing functional principal component analysis (FPCA) methods are restricted to data with a single or finite number of random functions (much smaller than the sample size n). In this work, we focus on high-dimensional functional processes where the number of random functions p is comparable to, or even much larger than n. Such data are ubiquitous in various fields, such as neuroimaging analysis, and cannot be modeled properly by existing methods. We propose a new algorithm, called sparse FPCA, that models principal eigenfunctions effectively un-der sensible sparsity regimes. The sparsity structure motivates a thresholding rule that is easy to compute by exploiting the relationship between univariate orthonor-mal basis expansions and the multivariate Karhunen-Loe`ve representation. We investigate the theoretical properties of the resulting estimators, and illustrate the performance using simulated and real-data examples.
引用
收藏
页码:1939 / 1960
页数:22
相关论文
共 37 条
[11]   Patterns of regional brain activity in alcohol-dependent subjects [J].
Hayden, Elizabeth P. ;
Wiegand, Ryan E. ;
Meyer, Eric T. ;
Bauer, Lance O. ;
O'Connor, Sean J. ;
Nurnberger, John I., Jr. ;
Chorlian, David B. ;
Porjesz, Bernice ;
Begleiter, Henri .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2006, 30 (12) :1986-1991
[12]  
Horvath L., 2012, Springer series in statistics, DOI DOI 10.1007/978-1-4614-3655-3
[13]   Statistical mechanics of neocortical interactions: Canonical moments indicators of electroencephalography [J].
Ingber, L .
PHYSICAL REVIEW E, 1997, 55 (04) :4578-4593
[14]   Model-based clustering for multivariate functional data [J].
Jacques, Julien ;
Preda, Cristian .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 :92-106
[15]   Principal component models for sparse functional data [J].
James, GM ;
Hastie, TJ ;
Sugar, CA .
BIOMETRIKA, 2000, 87 (03) :587-602
[16]   On Consistency and Sparsity for Principal Components Analysis in High Dimensions [J].
Johnstone, Iain M. ;
Lu, Arthur Yu .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) :682-693
[17]  
Kelly E.J., 1960, J. Math. and Phys, V39, P211
[18]   Partially functional linear regression in high dimensions [J].
Kong, Dehan ;
Xue, Kaijie ;
Yao, Fang ;
Zhang, Hao H. .
BIOMETRIKA, 2016, 103 (01) :147-159
[19]   From multiple Gaussian sequences to functional data and beyond: a Stein estimation approach [J].
Koudstaal, Mark ;
Yao, Fang .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (02) :319-342
[20]   Generalized functional linear models [J].
Müller, HG ;
Stadtmüller, U .
ANNALS OF STATISTICS, 2005, 33 (02) :774-805