SPARSE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS IN HIGH DIMENSIONS

被引:7
作者
Hu, Xiaoyu [1 ]
Yao, Fang [1 ]
机构
[1] Peking Univ, Ctr Stat Sci, Sch Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Basis expansion; multivariate Karhunen-Loe`ve expansion; sparsity regime; LINEAR-REGRESSION; MODELS;
D O I
10.5705/ss.202020.0445
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Existing functional principal component analysis (FPCA) methods are restricted to data with a single or finite number of random functions (much smaller than the sample size n). In this work, we focus on high-dimensional functional processes where the number of random functions p is comparable to, or even much larger than n. Such data are ubiquitous in various fields, such as neuroimaging analysis, and cannot be modeled properly by existing methods. We propose a new algorithm, called sparse FPCA, that models principal eigenfunctions effectively un-der sensible sparsity regimes. The sparsity structure motivates a thresholding rule that is easy to compute by exploiting the relationship between univariate orthonor-mal basis expansions and the multivariate Karhunen-Loe`ve representation. We investigate the theoretical properties of the resulting estimators, and illustrate the performance using simulated and real-data examples.
引用
收藏
页码:1939 / 1960
页数:22
相关论文
共 37 条
[1]  
Balakrishnan A. V., 1960, J MATH ANAL APPL, V1, P386
[2]   Multiclass Brain-Computer Interface Classification by Riemannian Geometry [J].
Barachant, Alexandre ;
Bonnet, Stephane ;
Congedo, Marco ;
Jutten, Christian .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) :920-928
[3]   Principal components for multivariate functional data [J].
Berrendero, J. R. ;
Justel, A. ;
Svarc, M. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (09) :2619-2634
[4]   MULTIVARIATE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS: A NORMALIZATION APPROACH [J].
Chiou, Jeng-Min ;
Chen, Yu-Ting ;
Yang, Ya-Fang .
STATISTICA SINICA, 2014, 24 (04) :1571-1596
[5]   Optimal Bayes classifiers for functional data and density ratios [J].
Dai, Xiongtao ;
Mueller, Hans-Georg ;
Yao, Fang .
BIOMETRIKA, 2017, 104 (03) :545-560
[6]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[7]  
Fan JQ, 2012, J ROY STAT SOC B, V74, P745, DOI 10.1111/j.1467-9868.2012.01029.x
[8]   On properties of functional principal components analysis [J].
Hall, P ;
Hosseini-Nasab, M .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :109-126
[9]   Methodology and convergence rates for functional linear regression [J].
Hall, Peter ;
Horowitz, Joel L. .
ANNALS OF STATISTICS, 2007, 35 (01) :70-91
[10]   Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains [J].
Happ, Clara ;
Greven, Sonja .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) :649-659