Magnetic toroidal dipole response in individual all-dielectric nanodisk clusters

被引:31
作者
Yang, Zhong-Jian [1 ]
Deng, Yan-Hui [1 ]
Yu, Ying [2 ]
He, Jun [1 ]
机构
[1] Cent South Univ, Sch Phys & Elect, Hunan Key Lab Super Microstruct & Ultrafast Proc, Changsha 410083, Hunan, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
NONRADIATING ANAPOLE MODES; LIGHT-SCATTERING; FIELD ENHANCEMENT; RESONANCE; NANOSPHERES; COUPLINGS;
D O I
10.1039/d0nr01440k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multipole electromagnetic resonances and their couplings are of crucial importance for both the fundamental understanding of light scattering by high-index all-dielectric nanostructures and lots of nanophotonic applications based on those nanostructures. Here, we show that magnetic dipole modes in a dielectric nanodisk cluster can easily form a magnetic toroidal dipole (MTD) mode. The cluster consists of five silicon nanodisks, where each nanodisk holds a magnetic dipole mode. These magnetic dipole modes can collectively couple with each other and form a MTD mode under suitable excitation. The MTD mode is confirmed by multipole expansion calculations and near field distributions, where two closed loops of magnetic field with opposite directions are seen. The response of the MTD is strong and comparable to that of a common electric dipole or magnetic dipole mode. It is also found that the MTD resonance is accompanied by an electric toroidal quadrupole mode in the cluster. The MTD mode is tunable by varying the geometries. We also fabricated silicon nanoparticle clusters and verified the MTD mode in the experiment. Our results illustrate the controllable excitation of strong high-order electromagnetic modes and these modes may open new opportunities for light manipulation at the nanoscale.
引用
收藏
页码:10639 / 10646
页数:8
相关论文
共 53 条
[1]   An electromagnetic multipole expansion beyond the long-wavelength approximation [J].
Alaee, Rasoul ;
Rockstuhl, Carsten ;
Fernandez-Corbaton, I. .
OPTICS COMMUNICATIONS, 2018, 407 :17-21
[2]   Optical Anapoles: Concepts and Applications [J].
Baryshnikova, Kseniia V. ;
Smirnova, Daria A. ;
Luk'yanchuk, Boris S. ;
Kivshar, Yuri S. .
ADVANCED OPTICAL MATERIALS, 2019, 7 (14)
[3]   Extremely high Q-factor metamaterials due to anapole excitation [J].
Basharin, Alexey A. ;
Chuguevsky, Vitaly ;
Volsky, Nikita ;
Kafesaki, Maria ;
Economou, Eleftherios N. .
PHYSICAL REVIEW B, 2017, 95 (03)
[4]   Nanoantennas for visible and infrared radiation [J].
Biagioni, Paolo ;
Huang, Jer-Shing ;
Hecht, Bert .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (02)
[5]   Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion [J].
Caldarola, Martin ;
Albella, Pablo ;
Cortes, Emiliano ;
Rahmani, Mohsen ;
Roschuk, Tyler ;
Grinblat, Gustavo ;
Oulton, Rupert F. ;
Bragas, Andrea V. ;
Maier, Stefan A. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Light emission driven by magnetic and electric toroidal dipole resonances in a silicon metasurface [J].
Cui, Chengcong ;
Yuan, Shuai ;
Qiu, Xingzhi ;
Zhu, Liangqiu ;
Wang, Yuxi ;
Li, Yi ;
Song, Jinwen ;
Huang, Qingzhong ;
Zeng, Cheng ;
Xia, Jinsong .
NANOSCALE, 2019, 11 (30) :14446-14454
[7]   Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement [J].
Deng, Yan-Hui ;
Yang, Zhong-Jian ;
He, Jun .
OPTICS EXPRESS, 2018, 26 (24) :31116-31128
[8]   Magnetic Plasmon-Enhanced Second-Harmonic Generation on Colloidal Gold Nanocups [J].
Ding, Si-Jing ;
Zhang, Han ;
Yang, Da-Jie ;
Qiu, Yun-Hang ;
Nan, Fan ;
Yang, Zhong-Jian ;
Wang, Jianfang ;
Wang, Qu-Quan ;
Lin, Hai-Qing .
NANO LETTERS, 2019, 19 (03) :2005-2011
[9]  
Edwards D.F., 1985, Handbook of optical constants of solids
[10]   Shape-Dependent Light Scattering Properties of Subwavelength Silicon Nanoblocks [J].
Ee, Ho-Seok ;
Kang, Ju-Hyung ;
Brongersma, Mark L. ;
Seo, Min-Kyo .
NANO LETTERS, 2015, 15 (03) :1759-1765