Modelling fracture process zone width and length for quasi-brittle fracture of rock, concrete and ceramics

被引:80
作者
Hu, Xiaozhi [1 ]
Li, Qingbin [2 ]
Wu, Zhimin [3 ]
Yang, Shutong [4 ]
机构
[1] Univ Western Australia, Dept Mech Engn, Perth, WA 6009, Australia
[2] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
[3] Dalian Univ Technol, State Key Laborary Coastal & Offshore Engn, Dalian 116024, Peoples R China
[4] Ocean Univ China, Dept Civil Engn, Qingdao 266100, Peoples R China
基金
澳大利亚研究理事会;
关键词
Fracture Process Zone (FPZ); FPZ width and length; Crack-tip blunting; Quasi-brittle fracture; Tensile strength; Fracture toughness; Characteristic microstructure C-ch; BOUNDARY EFFECT MODEL; SHAPE EFFECT LAW; GRAIN-SIZE; ENERGY; STRENGTH; TOUGHNESS; TESTS; EXTENSION; CURVE; MIXES;
D O I
10.1016/j.engfracmech.2021.108158
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The crack-tip fracture process zone (FPZ) length with distributed cohesive stresses is commonly modelled for quasi-brittle fracture of heterogeneous solids. This study highlights the crack-tip blunting effect from FPZ width since FPZ(W) > FPZ(L) at the peak fracture load. Both FPZ width and length are linked to the microstructure (grain size for rock and ceramics, aggregate size for concrete, atomic diameter for single crystal silicon), providing a fresh perspective on quasi-brittle fracture phenomena. Importantly, FPZ(W) at the peak fracture load bridges the gap between the fracture toughness K-IC and tensile strength f(t), i.e. K-IC <-> FPZ(W) <-> f(t). The influence of a blunt notch on quasi-brittle fracture can also be explained by a widened FPZ(W). A closed-form model containing both FPZ(W) and FPZ(L) (approximately FPZ(W)/FPZ(L) approximate to 2 at the peak fracture load) is used to analyse experimental data of rock, concrete and ceramic with macro-/micro-sized FPZ, and single crystal silicon with FPZ-like critically stressed atomic bonds in front of atomic scale defects.
引用
收藏
页数:14
相关论文
共 69 条
[1]  
American Society for Testing and Materials, 2010, STAND TEST METH LIN
[2]  
Anderson T.L., 2005, FRACTURE MECH
[3]  
[Anonymous], 2007, INTRO MAT SCI ENG
[4]   THE FORM OF CRACK TIP PLASTIC ZONES [J].
BANKS, TM ;
GARLICK, A .
ENGINEERING FRACTURE MECHANICS, 1984, 19 (03) :571-581
[5]  
Barenblatt G., 1959, APPL MATH MECH-ENGL, V23, P622, DOI [10.1016/0021-8928(59)90157-1, DOI 10.1016/0021-8928(59)90157-1]
[6]  
Bazˇant Z.P., 2004, ACTA POLYTECH, V44, DOI [10.14311/608, DOI 10.14311/608]
[7]  
Bazant Z.P., 1983, Mat. Constr, V16, P155, DOI [10.1007/BF02486267, DOI 10.1007/BF02486267]
[8]  
BAZANT ZP, 1984, J ENG MECH-ASCE, V110, P518
[9]   Non-ordinary state-based peridynamic analysis of stationary crack problems [J].
Breitenfeld, M. S. ;
Geubelle, P. H. ;
Weckner, O. ;
Silling, S. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 272 :233-250
[10]   Boundary effect on the softening curve of concrete [J].
Bretschneider, Nick ;
Slowik, Volker ;
Villmann, Beate ;
Mechtcherine, Viktor .
ENGINEERING FRACTURE MECHANICS, 2011, 78 (17) :2896-2906