Top Laminated Graphene Electrode in a Semitransparent Polymer Solar Cell by Simultaneous Thermal Annealing/Releasing Method

被引:178
作者
Lee, Yu-Ying [1 ]
Tu, Kun-Hua [1 ]
Yu, Chen-Chieh [1 ]
Li, Shao-Sian [1 ]
Hwang, Jeong-Yuan [2 ]
Lin, Chih-Cheng [1 ]
Chen, Kuei-Hsien [3 ]
Chen, Li-Chyong [2 ]
Chen, Hsuen-Li [1 ]
Chen, Chun-Wei [1 ]
机构
[1] Natl Taiwan Univ, Taipei 106, Taiwan
[2] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 116, Taiwan
[3] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
关键词
graphene electrode; top lamination; semitransparent solar cell; polymer solar cell; roll-to-roll; TRANSPARENT; OXIDE; LAYER; PERFORMANCE; FILMS;
D O I
10.1021/nn201940j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this article, we demonstrate a semitransparent inverted-type polymer solar cell using a top laminated graphene electrode without damaging the Underlying organic photoactive layer. The lamination process involves the simultaneous thermal releasing deposition of the graphene top electrode during thermal annealing of the photoactive layer. The resulting semitransparent polymer solar cell exhibits a promising power conversion efficiency of approximately 76% of that of the standard opaque device using an Ag metal electrode. The asymmetric. photovoltaic performances of the semitransparent solar cell While illuminated from two respective sides were further analyzed using optical simulation and photocarrier recombination measurement. The devices consisting of the top laminated transparent graphene electrode enable the feasible roll-to-roll manufacturing of low-cost semitransparent polymer solar cells and can be utilized in new applications such as power-generated windows or multijunction or bifacial photovoltaic devices.
引用
收藏
页码:6564 / 6570
页数:7
相关论文
共 30 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]  
Bass M., 1994, Devices, Measurements, and Properties, V2
[3]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[4]  
2-A
[5]   A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode [J].
Chang, Haixin ;
Wang, Guangfeng ;
Yang, An ;
Tao, Xiaoming ;
Liu, Xuqing ;
Shen, Youde ;
Zheng, Zijian .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (17) :2893-2902
[6]   Regioregularity effects in the chain orientation and optical anisotropy of composite polymer/fullerene films for high-efficiency, large-area organic solar cells [J].
Chuang, Shang-Yu ;
Chen, Hsuen-Li ;
Lee, Wen-Hao ;
Huang, Yu-Ching ;
Su, Wei-Fang ;
Jen, Wei-Ming ;
Chen, Chun-Wei .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (31) :5554-5560
[7]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   Organic solar cells using inverted layer sequence [J].
Glatthaar, M ;
Niggemann, M ;
Zimmermann, B ;
Lewer, P ;
Riede, M ;
Hinsch, A ;
Luther, J .
THIN SOLID FILMS, 2005, 491 (1-2) :298-300