Rational points on quadratic elliptic surfaces

被引:0
作者
Sadek, Mohammad [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey
关键词
Elliptic surfaces; Elliptic curves; Nagao's conjecture; Mordell-Weil rank; RANK; CURVE; EXAMPLE; FAMILIES;
D O I
10.1007/s40879-022-00577-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider elliptic surfaces whose coefficients are degree 2 polynomials in a variable T. It was recently shown, Kollar and Mella (Amer J Math 139(4):915-936 2017), that for infinitely many rational values of T the resulting elliptic curves have rank at least 1. We prove that the Mordell-Weil rank of each such elliptic surface is at most 6 over Q. In fact, we show that the Mordell-Weil rank of these elliptic surfaces is controlled by the number of zeros of a certain polynomial over Q.
引用
收藏
页码:674 / 686
页数:13
相关论文
共 15 条
  • [1] Constructing one-parameter families of elliptic curves with moderate rank
    Arms, Scott
    Lozano-Robledo, Alvaro
    Miller, Steven J.
    [J]. JOURNAL OF NUMBER THEORY, 2007, 123 (02) : 388 - 402
  • [2] Battistoni F., 2021, ARXIV
  • [3] FERMIGIER S, 1992, CR ACAD SCI I-MATH, V315, P719
  • [4] Fermigier S, 1997, ACTA ARITH, V82, P359
  • [5] Fermigier S., 1996, EXPT MATH, V5, P119
  • [6] Iwaniec H., 2004, ANAL NUMBER THEORY
  • [7] QUADRATIC FAMILIES OF ELLIPTIC CURVES AND UNIRATIONALITY OF DEGREE 1 CONIC BUNDLES
    Kollar, Janos
    Mella, Massimiliano
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2017, 139 (04) : 915 - 936
  • [8] Lower-Order Biases in Elliptic Curve Fourier Coefficients in Families
    Mackall, Blake
    Miller, Steven J.
    Rapti, Christina
    Winsor, Karl
    [J]. FROBENIUS DISTRIBUTIONS: LANG-TROTTER AND SATO-TATE CONJECTURES, 2016, 663 : 223 - 238
  • [9] MESTRE JF, 1991, CR ACAD SCI I-MATH, V313, P139
  • [10] MESTRE JF, 1991, CR ACAD SCI I-MATH, V313, P171