Central Limit Theorem for some non-stationary Markov chains

被引:6
作者
Gulgowski, Jacek [1 ]
Hille, Sander [2 ]
Szarek, Tomasz [1 ]
Ziemlanska, Maria [2 ]
机构
[1] Univ Gdansk, Inst Math, Wita Stwosza 57, PL-80952 Gdansk, Poland
[2] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
关键词
ADDITIVE-FUNCTIONALS;
D O I
10.4064/sm170325-8-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the classical Central Limit Theorem for stationary Markov chains proved by M. I. Gordin and B. A. Lifshits (1978) we show that it also holds for non-stationary Markov chains provided the transition probabilities satisfy the spectral gap property in the Kantorovich-Rubinstein norm.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 20 条
[1]  
Bogachev V. I., 2007, MEASURE THEORY, V2, DOI DOI 10.1007/978-3-540-34514-5
[2]   The central limit theorem for Markov chains started at a point [J].
Derriennic, Y ;
Lin, M .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (01) :73-76
[3]   VARIANCE BOUNDING MARKOV CHAINS, L2-UNIFORM MEAN ERGODICITY AND THE CLT [J].
Derriennic, Yves ;
Lin, Michael .
STOCHASTICS AND DYNAMICS, 2011, 11 (01) :81-94
[4]  
Dudley R.M., 2002, Cambridge Studies in Advanced Mathematics, V74
[5]  
Gordin MI., 1978, Sov. Math. Dokl, V19, P392
[6]  
Hall P., 2014, Martingale Limit Theory and Its Application
[7]  
Hille SC., 2016, Ann. Math. Blaise Pascal, V23, P171, DOI [10.5802/ambp.360, DOI 10.5802/AMBP.360]
[8]   Law of Large Numbers for Random Dynamical Systems [J].
Horbacz, Katarzyna ;
Sleczka, Maciej .
JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (03) :671-684
[9]   CENTRAL-LIMIT-THEOREM FOR ADDITIVE-FUNCTIONALS OF REVERSIBLE MARKOV-PROCESSES AND APPLICATIONS TO SIMPLE EXCLUSIONS [J].
KIPNIS, C ;
VARADHAN, SRS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (01) :1-19
[10]  
Komorowski T., 2012, Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation