Existence, Non-existence, and Uniqueness for a Heat Equation with Exponential Nonlinearity in R2

被引:26
作者
Ioku, Norisuke [1 ]
Ruf, Bernhard [2 ]
Terraneo, Elide [2 ]
机构
[1] Ehime Univ, Grad Sch Engn Sci, 2-5 Bunkyo Cho, Matsuyama, Ehime 7908577, Japan
[2] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
关键词
Heat equation; Existence; Non-existence; Uniqueness; Critical nonlinearity; GLOBAL-SOLUTIONS; SCHRODINGER-EQUATIONS; PARABOLIC EQUATIONS; NONUNIQUENESS; INEQUALITY; SPACES; NLS;
D O I
10.1007/s11040-015-9199-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a semilinear heat equation with exponential nonlinearity in R-2. We prove that local solutions do not exist for certain data in the Orlicz space exp L-2(R-2), even though a small data global existence result holds in the same space exp L-2(R-2). Moreover, some suitable subclass of exp L-2(R-2) for local existence and uniqueness is proposed.
引用
收藏
页数:19
相关论文
共 25 条
  • [1] Trudinger type inequalities in RN and their best exponents
    Adachi, S
    Tanaka, K
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) : 2051 - 2057
  • [2] [Anonymous], 2007, BIRKHAUSER ADV TEXTS
  • [3] [Anonymous], 2003, SOBOLEV SPACES
  • [4] Bennett C., 1988, PURE APPL MATH
  • [5] A nonlinear heat equation with singular initial data
    Brezis, H
    Cazenave, T
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 : 277 - 304
  • [6] ENERGY CRITICAL NLS IN TWO SPACE DIMENSIONS
    Colliander, J.
    Ibrahim, S.
    Majdoub, M.
    Masmoudi, N.
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2009, 6 (03) : 549 - 575
  • [7] Furioli G, 2000, REV MAT IBEROAM, V16, P605
  • [8] NONUNIQUENESS FOR A SEMI-LINEAR INITIAL-VALUE PROBLEM
    HARAUX, A
    WEISSLER, FB
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (02) : 167 - 189
  • [9] Scattering for the two-dimensional NLS with exponential nonlinearity
    Ibrahim, S.
    Majdoub, M.
    Masmoudi, N.
    Nakanishi, K.
    [J]. NONLINEARITY, 2012, 25 (06) : 1843 - 1849
  • [10] Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity
    Ibrahim, Slim
    Majdoub, Mohamed
    Masmoudi, Nader
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (11) : 1639 - 1658