Convective transport in nanofluids: The stationary problem

被引:8
作者
Baensch, Eberhard [1 ]
Faghih-Naini, Sara [2 ]
Morin, Pedro [3 ]
机构
[1] Univ Erlangen Nurnberg, Appl Math 3, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Bayreuth, Sci Comp, Univ Str 30, D-95447 Bayreuth, Germany
[3] Univ Nacl Litoral, Fac Ingn Quim, Santiago del Estero 2829,S3000AOM, Santa Fe, Argentina
关键词
Nanofluid; Thermophoresis; Heat transfer; Energy estimate; Weak solution;
D O I
10.1016/j.jmaa.2020.124151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the existence of solutions to the stationary problem from a mathematical model for convective transport in nanofluids including thermophoretic effects that is very similar to the celebrated model of Buongiorno [6]. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 15 条
[1]  
Abels H., 2008, Diffuse Interface Models for Two-Phase Flows of Viscous Incompressible Fluids
[2]   THERMODYNAMICALLY CONSISTENT, FRAME INDIFFERENT DIFFUSE INTERFACE MODELS FOR INCOMPRESSIBLE TWO-PHASE FLOWS WITH DIFFERENT DENSITIES [J].
Abels, Helmut ;
Garcke, Harald ;
Gruen, Guenther .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (03)
[3]  
[Anonymous], 2010, GRADUATE STUDIES MAT
[4]   A thermodynamically consistent model for convective transport in nanofluids: existence of weak solutions and fern computations [J].
Baensch, Eberhard .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (01) :41-59
[5]  
Bansch E., 2020, J HEAT TRANSF
[6]  
Bird R.B., 2001, Transport Phenomena, Vsecond
[7]   Convective transport in nanofluids [J].
Buongiorno, J .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (03) :240-250
[8]  
Choi S.U. S., ASME INT MECH ENG C
[10]   POTENTIAL SPACE ESTIMATES FOR GREEN POTENTIALS IN CONVEX DOMAINS [J].
FROMM, SJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :225-233