Multi-mode scanning electrochemical microscopic study of microbiologically influenced corrosion mechanism of 304 stainless steel by thermoacidophilic archaea

被引:28
作者
Qian, H. C. [1 ,2 ,3 ]
Chang, W. W. [1 ,2 ]
Cui, T. Y. [1 ,2 ]
Li, Z. [1 ,2 ]
Guo, D. W. [4 ,5 ]
Kwok, C. T. [4 ]
Tam, L. M. [4 ,5 ]
Zhang, D. W. [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Natl Mat Corros & Protect Data Ctr, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, BRI Southeast Asia Network Corros & Protect MOE, Shunde Grad Sch, Foshan 528399, Peoples R China
[4] Univ Macau, Dept Electromech Engn, Macau 999078, Peoples R China
[5] Inst Dev & Qual, Macau 999078, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Microbiologically influenced corrosion; Stainless steels; Scanning electrochemical microscopy; SULFATE-REDUCING BACTERIA; IRON-OXIDIZING BACTERIA; CARBON-STEEL; PITTING CORROSION; BIOCORROSION; RESOLUTION; BEHAVIOR; SECM;
D O I
10.1016/j.corsci.2021.109751
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, different modes of scanning electrochemical microscopy (SECM) were employed to study the biofilm morphology, oxygen concentration distribution and Fe2+ oxidation metabolism during the microbiologically influenced corrosion (MIC) of 304 stainless steel caused by the thermoacidophilic archaeon Metallosphaera cuprina. The results of in situ SECM study suggested that the decrease in the concentration of organic nutrients forced the M. cuprina biofilms to use Fe2+ as an electron donor and consume more Fe2+ from the pitting corrosion, which accelerated anodic dissolution and led to aggravated pitting corrosion of stainless steel.
引用
收藏
页数:9
相关论文
共 42 条
[1]  
Beech IB, 2005, INT MICROBIOL, V8, P157
[2]   Scanning electrochemical microscopy and its potential for studying biofilms and antimicrobial coatings [J].
Caniglia, Giada ;
Kranz, Christine .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (24) :6133-6148
[3]   Quantifying microbial chatter: scanning electrochemical microscopy as a tool to study interactions in biofilms [J].
Darch, Sophie E. ;
Koley, Dipankar .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2220)
[4]   Involvement of thermophilic archaea in the biocorrosion of oil pipelines [J].
Davidova, Irene A. ;
Duncan, Kathleen E. ;
Perez-Ibarra, B. Monica ;
Suflita, Joseph M. .
ENVIRONMENTAL MICROBIOLOGY, 2012, 14 (07) :1762-1771
[5]   The role of iron-oxidizing bacteria in biocorrosion: a review [J].
Emerson, David .
BIOFOULING, 2018, 34 (09) :989-1000
[6]   Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective [J].
Emerson, David ;
Fleming, Emily J. ;
McBeth, Joyce M. .
ANNUAL REVIEW OF MICROBIOLOGY, VOL 64, 2010, 2010, 64 :561-583
[7]  
GEESEY G, 1991, BIOFOULING AND BIOCORROSION IN INDUSTRIAL WATER SYSTEMS, P155
[8]   SECM study of defect repair in self-healing polymer coatings on metals [J].
Gonzalez-Garcia, Y. ;
Mol, J. M. C. ;
Muselle, T. ;
De Graeve, I. ;
Van Assche, G. ;
Scheltjens, G. ;
Van Mele, B. ;
Terryn, H. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (02) :169-173
[9]   Pyocyanin-modifying genes phzM and phzS regulated the extracellular electron transfer in microbiologically-influenced corrosion of X80 carbon steel by Pseudomonas aeruginosa [J].
Huang, Luyao ;
Huang, Ye ;
Lou, Yuntian ;
Qian, Hongchang ;
Xu, Dake ;
Ma, Lingwei ;
Jiang, Chengying ;
Zhang, Dawei .
CORROSION SCIENCE, 2020, 164
[10]   Recent Advances in Scanning Electrochemical Microscopy for Biological Applications [J].
Huang, Luyao ;
Li, Ziyu ;
Lou, Yuntian ;
Cao, Fahe ;
Zhang, Dawei ;
Li, Xiaogang .
MATERIALS, 2018, 11 (08)