On the geometry of the moduli spaces of semi-stable sheaves supported on plane quartics

被引:26
作者
Drezet, Jean-Marc [1 ]
Maican, Mario [2 ]
机构
[1] Inst Math Jussieu, Case 247, F-75252 Paris, France
[2] Inst Matemat Acad Romane, Bucharest 010702, Romania
关键词
Moduli spaces of sheaves; Plane quartics; SEMISTABLE SHEAVES; VECTOR-BUNDLES; CURVES; P2(C); MORPHISMS; VARIETIES;
D O I
10.1007/s10711-010-9544-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We decompose each moduli space of semi-stable sheaves on the complex projective plane with support of dimension one and degree four into locally closed subvarieties, each subvariety being the good or geometric quotient of a set of morphisms of locally free sheaves modulo a reductive or a non-reductive group. We find locally free resolutions of length one for all these sheaves and describe them.
引用
收藏
页码:17 / 49
页数:33
相关论文
共 24 条
[1]   Untwisted bundles and quasi locally free bundles on multiple primitive curves [J].
Drezet, Jean-Marc .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (07) :919-952
[2]   Alternative moduli varieties [J].
Drézet, JM .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (01) :57-+
[3]   Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups [J].
Drézet, JM ;
Trautmann, G .
ANNALES DE L INSTITUT FOURIER, 2003, 53 (01) :107-+
[4]   EXCEPTIONAL FIBERS AND GENERALIZED BEILINSON SPECTRAL SERIES ON P2(C) [J].
DREZET, JM .
MATHEMATISCHE ANNALEN, 1986, 275 (01) :25-48
[5]   MANIFOLDS OF EXTREMAL MODULI OF SEMISTABLE SHEAVES ON P2(C) [J].
DREZET, JM .
MATHEMATISCHE ANNALEN, 1991, 290 (04) :727-770
[6]  
DREZET JM, 1987, J REINE ANGEW MATH, V380, P14
[7]  
Drézet JM, 2000, J REINE ANGEW MATH, V518, P41
[8]  
Freiermuth H. G., 2000, THESIS U KAISERSLAUT
[9]   On the moduli scheme of stable sheaves supported on cubic space curves [J].
Freiermuth, HG ;
Trautmann, G .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (02) :363-393
[10]   EXCEPTIONAL VECTOR-BUNDLES ON PROJECTIVE SPACES [J].
GORODENTSEV, AL ;
RUDAKOV, AN .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :115-130