A characterization of trees based on independent domination subdivision number

被引:0
作者
Sharada, B. [1 ]
Soner, N. D. [1 ]
机构
[1] Univ Mysore, DOS Math, Mysore 570006, Karnataka, India
关键词
tree; Independent; domination; subdivision; number;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The independent domination subdivision number of a simple graph G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the independent domination number. For any tree, the independent domination subdivision number always lies between one and three inclusive. In this paper, we provide a constructive characterization of trees whose independent domination subdivision number is exactly three.
引用
收藏
页码:289 / 294
页数:6
相关论文
共 8 条
[1]   Domination subdivision numbers of trees [J].
Aram, H. ;
Sheikholeslami, S. M. ;
Favaron, O. .
DISCRETE MATHEMATICS, 2009, 309 (04) :622-628
[2]  
Bhattacharya A., 2002, Discussiones Mathematicae Graph Theory, V22, P335, DOI 10.7151/dmgt.1179
[3]  
Haynes T. W., 2003, Journal of Combinatorial Mathematics and Combinatorial Computing, V44, P115
[4]  
Haynes T. W., 2001, Discuss. Math. Graph Theory, V21, P239
[5]   Total domination subdivision numbers of trees [J].
Haynes, TW ;
Henning, MA ;
Hopkins, L .
DISCRETE MATHEMATICS, 2004, 286 (03) :195-202
[6]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[7]  
SHARADA B, 2008, LECT NOTES IN PRESS
[8]  
Velammal S., 1997, THESIS M SUNDARNAR U