A local approach to certain classes of finite groups

被引:15
作者
Ballester-Bolinches, A
Beidleman, JC
Heineken, H
机构
[1] Univ Valencia, Dept Algebra, E-46100 Valencia, Spain
[2] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
[3] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
finite groups; subnormal subgroups; permutability;
D O I
10.1081/AGB-120024860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop several local approaches for the three classes of finite groups: T-groups (normality is a transitive relation) and PT-groups (permutability is a transitive relation) and PST-groups (S-permutability is a transitive relation). Here a subgroup of a finite group G is S-permutable if it permutes with all the Sylow subgroup of G.
引用
收藏
页码:5931 / 5942
页数:12
相关论文
共 16 条
[1]   FINITE-GROUPS WHOSE SUBNORMAL SUBGROUPS PERMUTE WITH ALL SYLOW SUBGROUPS [J].
AGRAWAL, RK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (01) :77-83
[2]   Finite soluble groups with permutable subnormal subgroups [J].
Alejandre, MJ ;
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
JOURNAL OF ALGEBRA, 2001, 240 (02) :705-722
[3]   Sylow permutable subnormal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Esteban-Romero, R .
JOURNAL OF ALGEBRA, 2002, 251 (02) :727-738
[4]   Sylow permutable subnormal subgroups of finite groups II [J].
Ballester-Bolinches, A ;
Esteban-Romero, R .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (03) :479-486
[5]  
BALLESTERBOLINC.A, IN PRESS ILLINOIS J
[6]   Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups [J].
Beidleman, J ;
Heineken, H .
JOURNAL OF GROUP THEORY, 2003, 6 (02) :139-158
[7]   Criteria for permutability to be transitive in finite groups [J].
Beidleman, JC ;
Brewster, B ;
Robinson, DJS .
JOURNAL OF ALGEBRA, 1999, 222 (02) :400-412
[8]  
BEIDLEMAN JC, IN PRESS B UMI
[9]   THE WIELANDT SUBGROUP OF A FINITE SOLUBLE GROUP [J].
BRYCE, RA ;
COSSEY, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 :244-256
[10]  
Gaschutz W., 1957, J REINE ANGEW MATH, V198, P87, DOI [DOI 10.1515/CRLL.1957.198.87, DOI 10.1515/CR11.1957.198.87]