Dimensional study of the dynamical arrest in a random Lorentz gas

被引:16
作者
Jin, Yuliang [1 ,2 ,3 ,4 ]
Charbonneau, Patrick [1 ,5 ]
机构
[1] Duke Univ, Dept Chem, Durham, NC 27708 USA
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Ist Nazl Fis Nucl, Sez Roma 1, IPFC, CNR, I-00185 Rome, Italy
[4] Ecole Normale Super, CNRS, UMR 8549, LPT, F-75005 Paris, France
[5] Duke Univ, Dept Phys, Durham, NC 27708 USA
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 04期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
VOID PERCOLATION PROBLEM; PRECISE DETERMINATION; OVERLAPPING SPHERES; DIFFUSION; THRESHOLD; ALGORITHM;
D O I
10.1103/PhysRevE.91.042313
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The random Lorentz gas (RLG) is a minimal model for transport in heterogeneous media. Upon increasing the obstacle density, it exhibits a growing subdiffusive transport regime and then a dynamical arrest. Here, we study the dimensional dependence of the dynamical arrest, which can be mapped onto the void percolation transition for Poisson-distributed point obstacles. We numerically determine the arrest in dimensions d = 2-6. Comparison of the results with standard mode-coupling theory reveals that the dynamical theory prediction grows increasingly worse with d. In an effort to clarify the origin of this discrepancy, we relate the dynamical arrest in the RLG to the dynamic glass transition of the infinite-range Mari-Kurchan-model glass former. Through a mixed static and dynamical analysis, we then extract an improved dimensional scaling form as well as a geometrical upper bound for the arrest. The results suggest that understanding the asymptotic behavior of the random Lorentz gas may be key to surmounting fundamental difficulties with the mode-coupling theory of glasses.
引用
收藏
页数:8
相关论文
共 47 条
[1]  
Aharony A., 1994, Introduction To Percolation Theory, V2nd
[2]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[3]   Dynamic glass transition in two dimensions [J].
Bayer, M. ;
Brader, J. M. ;
Ebert, F. ;
Fuchs, M. ;
Lange, E. ;
Maret, G. ;
Schilling, R. ;
Sperl, M. ;
Wittmer, J. P. .
PHYSICAL REVIEW E, 2007, 76 (01)
[4]  
Bouchaud J.-P., 2010, MODE COUPLING THEORY
[5]   Geometrical frustration and static correlations in hard-sphere glass formers [J].
Charbonneau, Benoit ;
Charbonneau, Patrick ;
Tarjus, Gilles .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (12)
[6]   Hopping and the Stokes-Einstein relation breakdown in simple glass formers [J].
Charbonneau, Patrick ;
Jin, Yuliang ;
Parisi, Giorgio ;
Zamponi, Francesco .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (42) :15025-15030
[7]   Fractal free energy landscapes in structural glasses [J].
Charbonneau, Patrick ;
Kurchan, Jorge ;
Parisi, Giorgio ;
Urbani, Pierfrancesco ;
Zamponi, Francesco .
NATURE COMMUNICATIONS, 2014, 5
[8]   Glass Transition and Random Close Packing above Three Dimensions [J].
Charbonneau, Patrick ;
Ikeda, Atsushi ;
Parisi, Giorgio ;
Zamponi, Francesco .
PHYSICAL REVIEW LETTERS, 2011, 107 (18)
[9]   Effect of Polydispersity on Diffusion in Random Obstacle Matrices [J].
Cho, Hyun Woo ;
Kwon, Gyemin ;
Sung, Bong June ;
Yethiraj, Arun .
PHYSICAL REVIEW LETTERS, 2012, 109 (15)
[10]   Diffusion in the Lorentz Gas [J].
Dettmann, Carl P. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (04) :521-540