Facebook Social Media for Depression Detection in the Thai Community

被引:0
|
作者
Katchapakirin, Kantinee [1 ]
Wongpatikaseree, Konlakorn [2 ]
Yomaboot, Panida [3 ]
Kaewpitakkun, Yongyos [4 ]
机构
[1] TOT Publ Co Ltd, Bangkok, Thailand
[2] Mahidol Univ, Dept Comp Engn, Bangkok, Thailand
[3] Mahidol Univ, Dept Psychiat, Bangkok, Thailand
[4] Telenor Grp, Bangkok, Thailand
来源
2018 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE) | 2018年
关键词
depression detection; depression screening; psychological tool; social media mental health; health tech;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Depression is one of the leading mental health problems. It is a cause of psychological disability and economic burden to a country. Around 1.5 Thai people suffer from depression and its prevalence has been growing up fast. Although it is a serious psychological problem, less than a half of those who have this emotional problem gained access to mental health service. This could be a result of many factors including having lack awareness about the disease. One of the solutions would be providing a tool that depression could be easily and early detected. This would help people to be aware of their emotional states and seek help from professional services. Given Facebook is the most popular social network platform in Thailand, it could be a large-scale resource to develop a depression detection tool. This research employs Natural Language Processing (NLP) techniques to develop a depression detection algorithm for the Thai language on Facebook where people use it as a tool for sharing opinions, feelings, and life events. Results from 35 Facebook users indicated that Facebook behaviours could predict depression level.
引用
收藏
页码:227 / 231
页数:5
相关论文
共 50 条
  • [1] Explainable depression symptom detection in social media
    Bao, Eliseo
    Perez, Anxo
    Parapar, Javier
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2024, 12 (01):
  • [2] Understanding Depression Detection Using Social Media
    Latif, Aliza Abdul
    Cob, Zaihisma Che
    Drus, Sulfeeza Mohd
    Anwar, Rina Md
    Radzi, Husni Mohd
    6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,
  • [3] Depression Recognition in Social Media based on Symptoms' Detection
    Tlelo-Coyotecatl, Itzel
    Escalante, Hugo Jair
    Montes-y-Gomez, Manuel
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2022, (68): : 25 - 37
  • [4] Social Behavior Analysis and Thai Mental Health Questionnaire (TMHQ) Optimization for Depression Detection System
    Wongaptikaseree, Konlakorn
    Yomaboot, Panida
    Katchapakirin, Kantinee
    Kaewpitakkun, Yongyos
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (04) : 771 - 778
  • [5] Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities
    Aldkheel, Abdulrahman
    Zhou, Lina
    JOURNAL OF HEALTHCARE INFORMATICS RESEARCH, 2024, 8 (01) : 88 - 120
  • [6] Machine Learning for Depression Detection on Web and Social Media: A Systematic Review
    Gan, Lin
    Guo, Yingqi
    Yang, Tao
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2024, 20 (01)
  • [7] Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities
    Abdulrahman Aldkheel
    Lina Zhou
    Journal of Healthcare Informatics Research, 2024, 8 : 88 - 120
  • [8] MHA: a multimodal hierarchical attention model for depression detection in social media
    Zepeng Li
    Zhengyi An
    Wenchuan Cheng
    Jiawei Zhou
    Fang Zheng
    Bin Hu
    Health Information Science and Systems, 11
  • [9] Leveraging Domain Knowledge to Improve Depression Detection on Chinese Social Media
    Guo, Zhihua
    Ding, Nengneng
    Zhai, Minyu
    Zhang, Zhenwen
    Li, Zepeng
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (04) : 1528 - 1536
  • [10] MHA: a multimodal hierarchical attention model for depression detection in social media
    Li, Zepeng
    An, Zhengyi
    Cheng, Wenchuan
    Zhou, Jiawei
    Zheng, Fang
    Hu, Bin
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2023, 11 (01)