Safe Planning and Control Under Uncertainty for Self-Driving

被引:27
作者
Khaitan, Shivesh [1 ]
Lin, Qin [1 ]
Dolan, John M. [1 ]
机构
[1] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
关键词
Uncertainty; Planning; Trajectory; Vehicle dynamics; Safety; Predictive models; Electron tubes; Autonomous vehicles; motion planning; robust control; uncertainty; vehicle safety; PREDICTIVE CONTROL;
D O I
10.1109/TVT.2021.3108525
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Motion planning under uncertainty is critical for safe self-driving. This paper proposes a unified obstacle avoidance framework that deals with 1) uncertainty in ego-vehicle motion; and 2) prediction uncertainty of dynamic obstacles from the environment. A two-stage traffic participant trajectory predictor comprising short-term and long-term prediction is used in the planning layer to generate safe but not over-conservative trajectories for the ego-vehicle. The prediction module cooperates well with existing planning approaches. Our work showcases its effectiveness in a Frenet frame planner. A robust controller using tube MPC guarantees safe execution of the trajectory in the presence of state noise and dynamic model uncertainty. A Gaussian process regression model is used for on-line identification of the uncertainty's bound. We demonstrate the effectiveness, safety, and real-time performance of our framework in the CARLA simulator.
引用
收藏
页码:9826 / 9837
页数:12
相关论文
共 34 条
[1]  
Akametalu AK, 2014, IEEE DECIS CONTR P, P1424, DOI 10.1109/CDC.2014.7039601
[2]  
[Anonymous], 2003, MINIMAX APPROACHES R
[3]  
Arab Aliasghar, 2016, 2016 IEEE International Conference on Automation Science and Engineering (CASE), P221, DOI 10.1109/COASE.2016.7743384
[4]  
Borrelli F., 2005, International Journal of Vehicle Autonomous Systems, V3, P265, DOI 10.1504/IJVAS.2005.008237
[5]   Computing Large Convex Regions of Obstacle-Free Space Through Semidefinite Programming [J].
Deits, Robin ;
Tedrake, Russ .
ALGORITHMIC FOUNDATIONS OF ROBOTICS XI, 2015, 107 :109-124
[6]   Trajectory Planning for Autonomous High-Speed Overtaking in Structured Environments Using Robust MPC [J].
Dixit, Shilp ;
Montanaro, Umberto ;
Dianati, Mehrdad ;
Oxtoby, David ;
Mizutani, Tom ;
Mouzakitis, Alexandros ;
Fallah, Saber .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (06) :2310-2323
[7]  
Dosovitskiy A., 2017, P 1 ANN C ROB LEARN, P1, DOI DOI 10.48550/ARXIV.1711.03938
[8]  
Fan H., 2018, arXiv180708048
[9]  
Fang L., 2020, PROC CVPR IEEE, P6797, DOI DOI 10.1109/CVPR42600.2020.00683
[10]   A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles [J].
Gao, Yiqi ;
Gray, Andrew ;
Tseng, H. Eric ;
Borrelli, Francesco .
VEHICLE SYSTEM DYNAMICS, 2014, 52 (06) :802-823