Multiband charge density wave exposed in a transition metal dichalcogenide

被引:29
|
作者
Pasztor, Arpad [1 ]
Scarfato, Alessandro [1 ]
Spera, Marcello [1 ]
Flicker, Felix [2 ,3 ,4 ]
Barreteau, Celine [1 ]
Giannini, Enrico [1 ]
van Wezel, Jasper [5 ,6 ]
Renner, Christoph [1 ]
机构
[1] Univ Geneva, Dept Quantum Matter Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
[2] Univ Oxford, Dept Phys, Clarendon Lab, Rudolph Peierls Ctr Theoret Phys, Parks Rd, Oxford OX1 3PU, England
[3] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales
[4] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[5] Univ Amsterdam, InSt Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[6] Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
基金
瑞士国家科学基金会;
关键词
STATE; PHASE; 2H-NBSE2;
D O I
10.1038/s41467-021-25780-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While multiband superconductivity is the subject of extensive studies, the possibility of multiband charge density waves (CDW) remains elusive. Here, the authors report evidence of gap opening on both inner and outer bands by a CDW state in 2H-NbSe2, suggesting a possible multiband CDW. In the presence of multiple bands, well-known electronic instabilities may acquire new complexity. While multiband superconductivity is the subject of extensive studies, the possibility of multiband charge density waves (CDWs) has been largely ignored so far. Here, combining energy dependent scanning tunnelling microscopy (STM) topography with a simple model of the charge modulations and a self-consistent calculation of the CDW gap, we find evidence for a multiband CDW in 2H-NbSe2. This CDW not only involves the opening of a gap on the inner band around the K-point, but also on the outer band. This leads to spatially out-of-phase charge modulations from electrons on these two bands, which we detect through a characteristic energy dependence of the CDW contrast in STM images.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Incommensurate charge density wave in multiband intermetallic systems exhibiting competing orders
    Lopes, Nei
    Reyes, Daniel
    Costa, Natanael C.
    Continentino, Mucio A.
    Thomas, Christopher
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [42] The experimental charge density in transition metal compounds
    Bianchi, R
    Gervasio, G
    Marabello, D
    COMPTES RENDUS CHIMIE, 2005, 8 (9-10) : 1392 - 1399
  • [43] Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers
    Asaithambi, Aswin
    Kazemi Tofighi, Nastaran
    Ghini, Michele
    Curreli, Nicola
    Schuck, P. James
    Kriegel, Ilka
    CHEMICAL COMMUNICATIONS, 2023, 59 (50) : 7717 - 7730
  • [44] Charge Transfer Exciton and Spin Flipping at Organic Transition-Metal Dichalcogenide Interfaces
    Kafle, Tika R.
    Kattel, Bhupal
    Lane, Samuel D.
    Wang, Ti
    Zhao, Hui
    Chan, Wai-Lun
    ACS NANO, 2017, 11 (10) : 10184 - 10192
  • [45] Interlayer Charge Transfer and Photodetection Efficiency of Graphene-Transition-Metal-Dichalcogenide Heterostructures
    Parappurath, Aparna
    Mitra, Sreemanta
    Singh, Gagandeep
    Gill, Navkiranjot Kaur
    Ahmed, Tanweer
    Sai, T. Phanindra
    Watanabe, Kenji
    Taniguchi, Takashi
    Ghosh, Arindam
    PHYSICAL REVIEW APPLIED, 2022, 17 (06)
  • [46] Transition Metal Dichalcogenide Nanoantennas Lattice
    Viktoriia E. Babicheva
    MRS Advances, 2019, 4 : 2283 - 2288
  • [47] Charge-separated electron-hole liquid in transition metal dichalcogenide heterostructures
    Ratnikov, Pavel V.
    PHYSICS LETTERS A, 2022, 444
  • [48] Aging of Transition Metal Dichalcogenide Monolayers
    Gao, Jian
    Li, Baichang
    Tan, Jiawei
    Chow, Phil
    Lu, Toh-Ming
    Koratkar, Nikhil
    ACS NANO, 2016, 10 (02) : 2628 - 2635
  • [49] Transition Metal Dichalcogenide Nanoantennas Lattice
    Babicheva, Viktoriia E.
    MRS ADVANCES, 2019, 4 (41-42) : 2283 - 2288
  • [50] Transition metal dichalcogenide/polymer nanocomposites
    Yang, D.
    Westreich, P.
    Frindt, R.F.
    Nanostructured Materials, 1999, 12 (01): : 467 - 470