Nonlinear 2-DOFs Vibration Energy Harvester Based on Magnetic Levitation

被引:9
作者
Abed, I. [1 ,2 ,3 ]
Kacem, N. [1 ]
Bouazizi, M. L. [2 ,3 ,4 ]
Bouhaddi, N. [1 ]
机构
[1] Univ Franche Comte, Dept Appl Mech, FEMTO ST Inst, UMR 6174, 24 Chemin Epitaphe, F-25000 Besancon, France
[2] Preparatory Engn Inst Nabeul IPEIN, Mrezgua 8000, Nabeul, Tunisia
[3] Tunis El Manar Univ UTM, El Manar, Tunisia
[4] Salman Bin Abdulaziz Univ, Dept Mech, Coll Engn, Al Kharj, Saudi Arabia
来源
SHOCK & VIBRATION, AIRCRAFT/AEROSPACE, AND ENERGY HARVESTING, VOL 9 | 2015年
关键词
Energy harvesting; Nonlinear dynamics; Magnetic levitation; Electro-magnetic damping; Frequency bandwidth; CANTILEVER;
D O I
10.1007/978-3-319-15233-2_5
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The nonlinear dynamics of a two-degree-of-freedom (2-DOFs) vibrating energy harvester (VEH) based on magnetic levitation is modeled and investigated. The equations of motion have been derived while taking into account the magnetic nonlinearity and the electro-magnetic damping. The associated linear eigenvalue problem has been analyzed and optimality conditions have been expressed in term of distance minimization between the two eigenfrequencies of the considered system. The resulting optimal design parameters have been substituted into the coupled nonlinear equations of motion which have been numerically solved. It is shown that the performances of a classical single degree of freedom VEH can be significantly enhanced up to 270% in term of power density, up to 34% in term of frequency bandwidth and up to 10% in term of resonance frequency attenuation.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 10 条
[1]  
Arquier R, 2010, MANLAB INTERACTIVE P
[2]   A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions [J].
Cochelin, Bruno ;
Vergez, Christophe .
JOURNAL OF SOUND AND VIBRATION, 2009, 324 (1-2) :243-262
[3]   Investigation of Power Harvesting via Parametric Excitations [J].
Daqaq, Mohammed F. ;
Stabler, Christopher ;
Qaroush, Yousef ;
Seuaciuc-Osorio, Thiago .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2009, 20 (05) :545-557
[4]   Power Allocation Strategies in Energy Harvesting Wireless Cooperative Networks [J].
Ding, Zhiguo ;
Perlaza, Samir M. ;
Esnaola, Inaki ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (02) :846-860
[5]   Biomechanical energy harvesting: Generating electricity during walking with minimal user effort [J].
Donelan, J. M. ;
Li, Q. ;
Naing, V. ;
Hoffer, J. A. ;
Weber, D. J. ;
Kuo, A. D. .
SCIENCE, 2008, 319 (5864) :807-810
[6]   Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever [J].
Foisal, Abu Riduan Md ;
Hong, Chinsuk ;
Chung, Gwiy-Sang .
SENSORS AND ACTUATORS A-PHYSICAL, 2012, 182 :106-113
[7]   Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions [J].
Mahmoudi, S. ;
Kacem, N. ;
Bouhaddi, N. .
SMART MATERIALS AND STRUCTURES, 2014, 23 (07)
[8]   Energy harvesting from the nonlinear oscillations of magnetic levitation [J].
Mann, B. P. ;
Sims, N. D. .
JOURNAL OF SOUND AND VIBRATION, 2009, 319 (1-2) :515-530
[9]  
Wang W, 2010, ENV SCI INF APPL TEC
[10]   A model for the energy harvesting performance of shear mode piezoelectric cantilever [J].
Zhou, L. ;
Sun, J. ;
Zheng, X. J. ;
Deng, S. F. ;
Zhao, J. H. ;
Peng, S. T. ;
Zhang, Y. ;
Wang, X. Y. ;
Cheng, H. B. .
SENSORS AND ACTUATORS A-PHYSICAL, 2012, 179 :185-192