A Weighted Steiner Minimal Tree for Convex Quadrilaterals on the Two-Dimensional K-Plane

被引:0
作者
Zachos, Anastasios [1 ]
机构
[1] Univ Patras, Dept Math, Rion 26500, Greece
关键词
Steiner minimal tree; generalized convex quadrilaterals;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a method to find a weighted Steiner minimal tree for convex quadrilaterals on a two-dimensional hemisphere of radius 1/root K, for K > 0 and the two dimensional hyperbolic plane of constant Gaussian, Curvature K, for K < 0 by introducing a method of cyclical differentiation of the objective function with respect to four variable angles. By applying this method, we find a generalized solution to a problem posed by C. F. Gauss in the spirit of weighted Steiner trees.
引用
收藏
页码:139 / 152
页数:14
相关论文
共 7 条
[1]  
[Anonymous], 1951, WHAT IS MATH
[2]  
Berg ID, 2007, CONTEMP MATH, V424, P1
[3]  
Boltyanski V. G., 1999, Geometric Methods and Optimization Problems
[4]  
BOPP K, 1879, THESIS U GOTTINGEN G
[5]  
CIESLIK D, 2005, SHORTEST CONNECTIVIT
[6]   STEINER MINIMAL TREES [J].
GILBERT, EN ;
POLLAK, HO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) :1-&
[7]  
Zachos AN, 2008, J CONVEX ANAL, V15, P55