Stress corrosion cracking fracture mechanisms in rock bolts

被引:54
作者
Gamboa, E [1 ]
Atrens, A [1 ]
机构
[1] Univ Queensland, Dept Mat, Brisbane, Qld 4072, Australia
关键词
Fracture Surface; Pearlite; Stress Corrosion; Stress Corrosion Crack; Rock Bolt;
D O I
10.1023/A:1025996620197
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rock bolts have failed by Stress Corrosion Cracking (SCC). This paper presents a detailed examination of the fracture surfaces in an attempt to understand the SCC fracture mechanism. The SCC fracture surfaces, studied using Scanning Electron Microscopy (SEM), contained the following different surfaces: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS) and Micro Void Coalescence (MVC). TTS was characterised by a ridge pattern independent of the pearlite microstructure, but having a spacing only slightly coarser than the pearlite spacing. CIS was characterised as porous irregular corrugated surfaces joined by rough slopes. MVC found in the studied rock bolts was different to that in samples failed in a pure ductile manner. The MVC observed in rock bolts was more flat and regular than the pure MVC, being attributed to hydrogen embrittling the ductile material near the crack tip. The interface between the different fracture surfaces revealed no evidence of a third mechanism involved in the transition between fracture mechanisms. The microstructure had no effect on the diffusion of hydrogen nor on the fracture mechanisms. The following SCC mechanism is consistent with the fracture surfaces. Hydrogen diffused into the material, reaching a critical concentration level. The thus embrittled material allowed a crack to propagate through the brittle region. The crack was arrested once it propagated outside the brittle region. Once the new crack was formed, corrosion reactions started producing hydrogen that diffused into the material once again. (C) 2003 Kluwer Academic Publishers.
引用
收藏
页码:3813 / 3829
页数:17
相关论文
共 5 条
[1]   LINEARLY INCREASING STRESS TEST (LIST) FOR SCC RESEARCH [J].
ATRENS, A ;
BROSNAN, CC ;
RAMAMURTHY, S ;
OEHLERT, A ;
SMITH, IO .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1993, 4 (11) :1281-1292
[2]  
GAMBOA E, 2002, P 15 INT CORR C GAN, P1
[3]  
GAMBOA E, 2002, P INT C HYDR EFF MAT
[4]  
GAMBOA E, 2003, ENV INFLUENCE STRESS
[5]   Hydrogen-assisted micro-damage evolution in pearlitic steel [J].
Toribio, J ;
Vasseur, E .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1997, 16 (16) :1345-1348