Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L.)

被引:25
|
作者
Fan, Yu [1 ,2 ]
Wei, Xiaobao [3 ]
Lai, Dili [1 ]
Yang, Hao [1 ]
Feng, Liang [4 ]
Li, Long [5 ]
Niu, Kexin [5 ]
Chen, Long [6 ]
Xiang, Dabing [2 ]
Ruan, Jingjun [1 ]
Yan, Jun [2 ]
Cheng, Jianping [1 ]
机构
[1] Guizhou Univ, Coll Agr, Guiyang 550025, Peoples R China
[2] Chengdu Univ, Sch Food & Biol Engn, Chengdu 610106, Peoples R China
[3] Guizhou Prov Ctr Dis Control & Prevent, Guiyang 550025, Peoples R China
[4] Chengdu Inst Food Inspect, Chengdu 610030, Peoples R China
[5] Henan Univ Technol, Zhengzhou 450001, Peoples R China
[6] Sichuan Tianyi Coll, Dept Nursing, Mianzhu 618200, Peoples R China
基金
美国国家科学基金会;
关键词
Setaria italica; GRAS gene family; Genome-wide analysis; DELLA protein; Fruit development; Abiotic stress; ASYMMETRIC CELL-DIVISION; SCARECROW-LIKE; 3; GENE FAMILY; SIGNALING PATHWAY; DELLA PROTEINS; ARABIDOPSIS; EXPRESSION; GROWTH; SEQUENCE; BINDING;
D O I
10.1186/s12870-021-03277-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background GRAS transcription factors perform indispensable functions in various biological processes, such as plant growth, fruit development, and biotic and abiotic stress responses. The development of whole-genome sequencing has allowed the GRAS gene family to be identified and characterized in many species. However, thorough in-depth identification or systematic analysis of GRAS family genes in foxtail millet has not been conducted. Results In this study, 57 GRAS genes of foxtail millet (SiGRASs) were identified and renamed according to the chromosomal distribution of the SiGRAS genes. Based on the number of conserved domains and gene structure, the SiGRAS genes were divided into 13 subfamilies via phylogenetic tree analysis. The GRAS genes were unevenly distributed on nine chromosomes, and members of the same subfamily had similar gene structures and motif compositions. Genetic structure analysis showed that most SiGRAS genes lacked introns. Some SiGRAS genes were derived from gene duplication events, and segmental duplications may have contributed more to GRAS gene family expansion than tandem duplications. Quantitative polymerase chain reaction showed significant differences in the expression of SiGRAS genes in different tissues and stages of fruits development, which indicated the complexity of the physiological functions of SiGRAS. In addition, exogenous paclobutrazol treatment significantly altered the transcription levels of DELLA subfamily members, downregulated the gibberellin content, and decreased the plant height of foxtail millet, while it increased the fruit weight. In addition, SiGRAS13 and SiGRAS25 may have the potential for genetic improvement and functional gene research in foxtail millet. Conclusions Collectively, this study will be helpful for further analysing the biological function of SiGRAS. Our results may contribute to improving the genetic breeding of foxtail millet.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Genome-Wide Identification of LBD Genes in Foxtail Millet (Setaria italica) and Functional Characterization of SiLBD21
    Li, Kunjie
    Wei, Yaning
    Wang, Yimin
    Tan, Bin
    Chen, Shoukun
    Li, Haifeng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [42] Identification, Molecular Characteristics, and Evolution of GRF Gene Family in Foxtail Millet (Setaria italica L.)
    Chen, Huilong
    Ge, Weina
    FRONTIERS IN GENETICS, 2022, 12
  • [43] Genome-wide identification, expression analysis, and functional study of the GRAS transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]
    Fan, Yu
    Yan, Jun
    Lai, Dili
    Yang, Hao
    Xue, Guoxing
    He, Ailing
    Guo, Tianrong
    Chen, Long
    Cheng, Xiao-bin
    Xiang, Da-bing
    Ruan, Jingjun
    Cheng, Jianping
    BMC GENOMICS, 2021, 22 (01)
  • [44] Genome-Wide Identification and Characterization of Alternative Oxidase (AOX) Genes in Foxtail Millet (Setaria italica): Insights into Their Abiotic Stress Response
    Zhang, Hui
    Luo, Yidan
    Wang, Yujing
    Zhao, Juan
    Wang, Yueyue
    Li, Yajun
    Pu, Yihao
    Wang, Xingchun
    Ren, Xuemei
    Zhao, Bo
    PLANTS-BASEL, 2024, 13 (18):
  • [45] Genome-Wide Identification and Characterization of the VQ Motif-Containing Gene Family Based on Their Evolution and Expression Analysis under Abiotic Stress and Hormone Treatments in Foxtail Millet (Setaria italica L.)
    Liu, Meiling
    Li, Cong
    Li, Yuntong
    An, Yingtai
    Ruan, Xiaoxi
    Guo, Yicheng
    Dong, Xiaomei
    Ruan, Yanye
    GENES, 2023, 14 (05)
  • [46] The Responses of the Lipoxygenase Gene Family to Salt and Drought Stress in Foxtail Millet (Setaria italica)
    Zhang, Qianxiang
    Zhao, Yaofei
    Zhang, Jinli
    Li, Xukai
    Ma, Fangfang
    Duan, Ming
    Zhang, Bin
    Li, Hongying
    LIFE-BASEL, 2021, 11 (11):
  • [47] Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L.
    Bin Zhang
    J. Liu
    Zhao E. Yang
    Er Y. Chen
    Chao J. Zhang
    Xue Y. Zhang
    Fu G. Li
    BMC Genomics, 19
  • [48] Early Identification of Salt Tolerant Foxtail Millet (Setaria italica L. Beauv)
    Ardie, Sintho Wahyuning
    Khumaida, Nurul
    Nur, Amin
    Fauziah, Nurul
    FIRST INTERNATIONAL SYMPOSIUM ON FOOD AND AGRO-BIODIVERSITY CONDUCTED BY INDONESIAN FOOD TECHNOLOGISTS COMMUNITY, 2015, 3 : 303 - 312
  • [49] Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database
    Yusuf Khan
    Amita Yadav
    Venkata Suresh Bonthala
    Mehanathan Muthamilarasan
    Chandra Bhan Yadav
    Manoj Prasad
    Plant Cell, Tissue and Organ Culture (PCTOC), 2014, 118 : 279 - 292
  • [50] Genome-Wide Analysis and Expression Profiling of the ERF Transcription Factor Family in Potato (Solanum tuberosum L.)
    Charfeddine, Mariam
    Saidi, Mohamed Najib
    Charfeddine, Safa
    Hammami, Asma
    Bouzid, Radhia Gargouri
    MOLECULAR BIOTECHNOLOGY, 2015, 57 (04) : 348 - 358