Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L.)

被引:25
|
作者
Fan, Yu [1 ,2 ]
Wei, Xiaobao [3 ]
Lai, Dili [1 ]
Yang, Hao [1 ]
Feng, Liang [4 ]
Li, Long [5 ]
Niu, Kexin [5 ]
Chen, Long [6 ]
Xiang, Dabing [2 ]
Ruan, Jingjun [1 ]
Yan, Jun [2 ]
Cheng, Jianping [1 ]
机构
[1] Guizhou Univ, Coll Agr, Guiyang 550025, Peoples R China
[2] Chengdu Univ, Sch Food & Biol Engn, Chengdu 610106, Peoples R China
[3] Guizhou Prov Ctr Dis Control & Prevent, Guiyang 550025, Peoples R China
[4] Chengdu Inst Food Inspect, Chengdu 610030, Peoples R China
[5] Henan Univ Technol, Zhengzhou 450001, Peoples R China
[6] Sichuan Tianyi Coll, Dept Nursing, Mianzhu 618200, Peoples R China
基金
美国国家科学基金会;
关键词
Setaria italica; GRAS gene family; Genome-wide analysis; DELLA protein; Fruit development; Abiotic stress; ASYMMETRIC CELL-DIVISION; SCARECROW-LIKE; 3; GENE FAMILY; SIGNALING PATHWAY; DELLA PROTEINS; ARABIDOPSIS; EXPRESSION; GROWTH; SEQUENCE; BINDING;
D O I
10.1186/s12870-021-03277-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background GRAS transcription factors perform indispensable functions in various biological processes, such as plant growth, fruit development, and biotic and abiotic stress responses. The development of whole-genome sequencing has allowed the GRAS gene family to be identified and characterized in many species. However, thorough in-depth identification or systematic analysis of GRAS family genes in foxtail millet has not been conducted. Results In this study, 57 GRAS genes of foxtail millet (SiGRASs) were identified and renamed according to the chromosomal distribution of the SiGRAS genes. Based on the number of conserved domains and gene structure, the SiGRAS genes were divided into 13 subfamilies via phylogenetic tree analysis. The GRAS genes were unevenly distributed on nine chromosomes, and members of the same subfamily had similar gene structures and motif compositions. Genetic structure analysis showed that most SiGRAS genes lacked introns. Some SiGRAS genes were derived from gene duplication events, and segmental duplications may have contributed more to GRAS gene family expansion than tandem duplications. Quantitative polymerase chain reaction showed significant differences in the expression of SiGRAS genes in different tissues and stages of fruits development, which indicated the complexity of the physiological functions of SiGRAS. In addition, exogenous paclobutrazol treatment significantly altered the transcription levels of DELLA subfamily members, downregulated the gibberellin content, and decreased the plant height of foxtail millet, while it increased the fruit weight. In addition, SiGRAS13 and SiGRAS25 may have the potential for genetic improvement and functional gene research in foxtail millet. Conclusions Collectively, this study will be helpful for further analysing the biological function of SiGRAS. Our results may contribute to improving the genetic breeding of foxtail millet.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Genome-Wide Characterization and Haplotypic Variation Analysis of the IDD Gene Family in Foxtail Millet (Setaria italica)
    Wu, Hongpo
    Zhang, Renliang
    Diao, Xianmin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [22] Genome-Wide Identification and Characterization of the CCT Gene Family in Foxtail Millet (Setaria italica) Response to Diurnal Rhythm and Abiotic Stress
    Li, Yuntong
    Yu, Shumin
    Zhang, Qiyuan
    Wang, Ziwei
    Liu, Meiling
    Zhang, Ao
    Dong, Xiaomei
    Fan, Jinjuan
    Zhu, Yanshu
    Ruan, Yanye
    Li, Cong
    GENES, 2022, 13 (10)
  • [23] Genome-Wide Characterization and Haplotypic Variation Analysis of the YUC Gene Family in Foxtail Millet (Setaria italica)
    Meng, Qiang
    Zhang, Renliang
    Wang, Yannan
    Zhi, Hui
    Tang, Sha
    Jia, Guanqing
    Diao, Xianmin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (21)
  • [24] Genome-wide identification, characterization, and expression analysis of superoxide dismutase (SOD) genes in foxtail millet (Setaria italica L.)
    Wang, Tao
    Song, Hui
    Zhang, Baohong
    Lu, Quanwei
    Liu, Zhen
    Zhang, Shulin
    Guo, Ruilin
    Wang, Cong
    Zhao, Zilin
    Liu, Jinrong
    Peng, Renhai
    3 BIOTECH, 2018, 8 (12)
  • [25] Genome-Wide Analysis of LIM Family Genes in Foxtail Millet (Setaria italica L.) and Characterization of the Role of SiWLIM2b in Drought Tolerance
    Yang, Rui
    Chen, Ming
    Sun, Jian-Chang
    Yu, Yue
    Min, Dong-Hong
    Chen, Jun
    Xu, Zhao-Shi
    Zhou, Yong-Bin
    Ma, You-Zhi
    Zhang, Xiao-Hong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (06)
  • [26] Genome-wide identification, characterization, and expression analysis of superoxide dismutase (SOD) genes in foxtail millet (Setaria italica L.)
    Tao Wang
    Hui Song
    Baohong Zhang
    Quanwei Lu
    Zhen Liu
    Shulin Zhang
    Ruilin Guo
    Cong Wang
    Zilin Zhao
    Jinrong Liu
    Renhai Peng
    3 Biotech, 2018, 8
  • [27] Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database
    Khan, Yusuf
    Yadav, Amita
    Bonthala, Venkata Suresh
    Muthamilarasan, Mehanathan
    Yadav, Chandra Bhan
    Prasad, Manoj
    PLANT CELL TISSUE AND ORGAN CULTURE, 2014, 118 (02) : 279 - 292
  • [28] Identification and Molecular Characterization of MYB Transcription Factor Superfamily in C4 Model Plant Foxtail Millet (Setaria italica L.)
    Muthamilarasan, Mehanathan
    Khandelwal, Rohit
    Yadav, Chandra Bhan
    Bonthala, Venkata Suresh
    Khan, Yusuf
    Prasad, Manoj
    PLOS ONE, 2014, 9 (10):
  • [29] Genome-wide identification of the adaptor protein complexes and its expression patterns analysis in foxtail millet (Setaria italica L.)
    Wang, Dan
    Su, Min
    Hao, Jian-Hong
    Li, Zi-Dong
    Dong, Shuqi
    Yuan, Xiangyang
    Li, Xiaorui
    Gao, Lulu
    Chu, Xiaoqian
    Yang, Guanghui
    Wang, Jia-Gang
    Du, Huiling
    BMC PLANT BIOLOGY, 2025, 25 (01):
  • [30] Genome-wide investigation of histone acetyltransferase gene family and its responses to biotic and abiotic stress in foxtail millet (Setaria italica [L.] P. Beauv)
    Guofang Xing
    Minshan Jin
    Ruifang Qu
    Jiewei Zhang
    Yuanhuai Han
    Yanqing Han
    Xingchun Wang
    Xukai Li
    Fangfang Ma
    Xiongwei Zhao
    BMC Plant Biology, 22