Lp solutions of backward stochastic differential equations

被引:287
作者
Briand, P
Delyon, B
Hu, Y
Pardoux, E
Stoica, L
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[2] Univ Aix Marseille 1, CMI, F-13453 Marseille 13, France
[3] Univ Bucharest, RO-70109 Bucharest, Romania
关键词
backward stochastic differential equation; monotone generator; p-integrable data;
D O I
10.1016/S0304-4149(03)00089-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we are interested in solving backward stochastic differential equations (BSDEs for short) under weak assumptions on the data. The first part of the paper is devoted to the development of some new technical aspects of stochastic calculus related to BSDEs. Then we derive a priori estimates and prove existence and uniqueness of solutions in L-p p > 1, extending the results of El Karoui et al. (Math. Finance 7(1) (1997) 1) to the case where the monotonicity conditions of Pardoux (Nonlinear Analysis; Differential Equations and Control (Montreal, QC, 1998), Kluwer Academic Publishers, Dordrecht, pp. 503-549) are satisfied. We consider both a fixed and a random time interval. In the last section, we obtain, under an additional assumption, an existence and uniqueness result for BSDEs on a fixed time interval, when the data are only in L-1. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 129
页数:21
相关论文
共 10 条
[1]  
[Anonymous], 1980, PROBABILITES POTENTI
[2]  
[Anonymous], 1991, CONTINUOUS MARTINGAL, DOI DOI 10.1007/978-3-662-21726-9
[3]  
Briand P., 2000, J. Appl. Math. Stochastic Anal., V13, P207
[4]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71
[5]  
Kobylanski M, 1997, CR ACAD SCI I-MATH, V324, P81
[6]  
LEPELTIER JP, 1998, STOCHASTICS STOCHAST, V63, P227
[7]  
Pardoux E, 1999, NATO ADV SCI I C-MAT, V528, P503
[8]   ADAPTED SOLUTION OF A BACKWARD STOCHASTIC DIFFERENTIAL-EQUATION [J].
PARDOUX, E ;
PENG, SG .
SYSTEMS & CONTROL LETTERS, 1990, 14 (01) :55-61
[9]  
Peng S., 1997, Pitman research notes in mathematics series, V364, P141
[10]  
Peng S.G., 1991, STOCHASTICS, V37, P61