Global existence of strong solutions to micropolar equations in cylindrical domains

被引:3
作者
Nowakowski, Bernard [1 ]
机构
[1] Polish Acad Sci, Inst ofMathemat, PL-00956 Warsaw, Poland
关键词
micropolar fluids; cylindrical domains; global existence; strong solutions; NAVIER-STOKES EQUATIONS; LONG-TIME BEHAVIOR; REGULAR SOLUTIONS; BOUNDARY-CONDITIONS; FLUID EQUATIONS; STABILITY; SYSTEM;
D O I
10.1002/mma.3070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The micropolar equations are a useful generalization of the classical Navier-Stokes model for fluids with microstructure. We prove the existence of global and strong solutions to these equations in cylindrical domains in R-3. We do not impose any restrictions on the magnitude of the initial and external data, but we require that they cannot change in the x(3)-direction too fast. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:311 / 329
页数:19
相关论文
共 35 条
[1]   MICROCONTINUUM FLUID MECHANICS - REVIEW [J].
ARIMAN, T ;
TURK, MA ;
SYLVESTER, ND .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1973, 11 (08) :905-930
[2]  
BUGLIARELLO G, 1970, Biorheology, V7, P85
[3]  
Cholewa J.W., London Mathematical Society Lecture Note Series, V278, DOI DOI 10.1017/CBO9780511526404
[4]   On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions [J].
Clopeau, T ;
Mikelic, A ;
Robert, R .
NONLINEARITY, 1998, 11 (06) :1625-1636
[5]   Global regularity of the 2D micro polar fluid flows with zero angular viscosity [J].
Dong, Bo-Qing ;
Zhang, Zhifei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (01) :200-213
[6]  
ERINGEN AC, 1966, J MATH MECH, V16, P1
[7]   On the existence and stability of solutions for the micropolar fluids in exterior domains [J].
Ferreira, L. C. F. ;
Villamizar-Roa, E. J. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (10) :1185-1208
[8]   Micropolar fluid system in a space of distributions and large time behavior [J].
Ferreira, L. C. F. ;
Villamizar-Roa, E. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) :1425-1445
[9]   Navier-stokes equations with navier boundary conditions for a bounded domain in the plane [J].
Kelliher, James P. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) :210-232
[10]  
Ladyzenskaja O. A., 1967, LINEAR QUASILINEAR E, V23