Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions

被引:43
作者
Cohen, David [1 ]
Hairer, Ernst [2 ]
Lubich, Christian [3 ]
机构
[1] Univ Basel, Math Inst, CH-4051 Basel, Switzerland
[2] Univ Geneva, Dept Math, CH-1211 Geneva 4, Switzerland
[3] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
D O I
10.1007/s00205-007-0095-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modulated Fourier expansion in time is used to show long-time near-conservation of the harmonic actions associated with spatial Fourier modes along the solutions of nonlinear wave equations with small initial data. The result implies the long-time near-preservation of the Sobolev-type norm that specifies the smallness condition on the initial data.
引用
收藏
页码:341 / 368
页数:28
相关论文
共 16 条
[1]   Birkhoff normal form for partial differential equations with tame modulus [J].
Bambusi, D. ;
Grebert, B. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :507-567
[2]   Birkhoff normal form for some nonlinear PDEs [J].
Bambusi, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 234 (02) :253-285
[3]  
Bambusi D., 2005, 14 INT C MATH PHYS L, P273
[4]  
BAMBUST B, 2005, ALMOST GLOBAL EXISTE
[5]   Construction of approximative and almost periodic solutions of perturbed linear Schrodinger and wave equations [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (02) :201-230
[6]   On diffusion in high-dimensional Hamiltonian systems and PDE [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 2000, 80 (1) :1-35
[7]  
COHEN D, 2007, CONSERVATION ENERGY
[8]   NEWTONS METHOD AND PERIODIC-SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
CRAIG, W ;
WAYNE, CE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (11) :1409-1498
[9]  
Delort JM, 2004, INT MATH RES NOTICES, V2004, P1897
[10]  
Guzzo M, 2001, DISCRETE CONT DYN-B, V1, P1