Empirical likelihood for probability density functions under negatively associated samples

被引:8
作者
Qin, Yongsong [1 ]
Li, Yinghua [1 ]
Lei, Qingzhu [1 ]
机构
[1] Guangxi Normal Univ, Sch Math Sci, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Probability density function; Blockwise empirical likelihood; Negatively associated sample; Confidence interval; RANDOM-VARIABLES; CONFIDENCE-INTERVALS; ASYMPTOTIC NORMALITY; MOMENT INEQUALITIES; WEAK-CONVERGENCE; SEQUENCES; DEPENDENCE; SUMS;
D O I
10.1016/j.jspi.2010.06.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the construction of confidence intervals for a probability density function under a negatively associated sample by using the blockwise technique. It is shown that the blockwise empirical likelihood (EL) ratio statistic is asymptotically chi(2)-type distributed. The result is used to obtain EL based confidence interval on the probability density function. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:373 / 381
页数:9
相关论文
共 20 条
[1]   SOME CONCEPTS OF NEGATIVE DEPENDENCE [J].
BLOCK, HW ;
SAVITS, TH ;
SHAKED, M .
ANNALS OF PROBABILITY, 1982, 10 (03) :765-772
[2]   Empirical likelihood confidence intervals for nonparametric density estimation [J].
Chen, SX .
BIOMETRIKA, 1996, 83 (02) :329-341
[3]   METHODOLOGY AND ALGORITHMS OF EMPIRICAL LIKELIHOOD [J].
HALL, P ;
LASCALA, B .
INTERNATIONAL STATISTICAL REVIEW, 1990, 58 (02) :109-127
[4]  
Hall P., 2013, BOOTSTRAP EDGEWORTH
[5]   Some maximal inequalities and complete convergences of negatively associated random sequences [J].
Huang, WT ;
Xu, B .
STATISTICS & PROBABILITY LETTERS, 2002, 57 (02) :183-191
[6]   NEGATIVE ASSOCIATION OF RANDOM-VARIABLES, WITH APPLICATIONS [J].
JOAGDEV, K ;
PROSCHAN, F .
ANNALS OF STATISTICS, 1983, 11 (01) :286-295
[7]   Empirical likelihood methods with weakly dependent processes [J].
Kitamura, Y .
ANNALS OF STATISTICS, 1997, 25 (05) :2084-2102
[8]   Complete moment convergence of moving-average processes under dependence assumptions [J].
Li, YX ;
Zhang, LX .
STATISTICS & PROBABILITY LETTERS, 2004, 70 (03) :191-197
[9]   Complete convergence for weighted sums of NA sequences [J].
Liang, HY ;
Su, C .
STATISTICS & PROBABILITY LETTERS, 1999, 45 (01) :85-95
[10]   A NOTE ON THE ALMOST SURE CONVERGENCE OF SUMS OF NEGATIVELY DEPENDENT RANDOM-VARIABLES [J].
MATULA, P .
STATISTICS & PROBABILITY LETTERS, 1992, 15 (03) :209-213