Self-Similarity Analysis of the Nonlinear Schrodinger Equation in the Madelung Form

被引:0
作者
Barna, Imre F. [1 ,2 ]
Pocsai, Mihaly A. [1 ,3 ]
Matyas, L. [4 ]
机构
[1] Hungarian Acad Sci, Wigner Res Ctr Phys, Konkoly Thege Miklos Ut 29-33, H-1121 Szeged, Hungary
[2] ELI HU Nonprofit Kft, Dugon Ter 13, H-6720 Szeged, Hungary
[3] Univ Pecs, Inst Phys, Ifjusag Utja 6, H-7624 Pecs, Hungary
[4] Sapientia Univ, Dept Bioengn, Libertatii Sq 1, Miercurea Ciuc 530104, Romania
关键词
BOSE-EINSTEIN CONDENSATION; GROSS-PITAEVSKII;
D O I
10.1155/2018/7087295
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present study a particular case of Gross-Pitaevskii or nonlinear Schrodinger equation is rewritten to a form similar to a hydrodynamic Euler equation using the Madelung transformation. The obtained system of differential equations is highly nonlinear. Regarding the solutions, a larger coefficient of the nonlinear term yields stronger deviation of the solution from the linear case.
引用
收藏
页数:5
相关论文
共 35 条
[1]  
[Anonymous], 2010, Handbook of Mathematical Functions
[2]  
[Anonymous], 1993, SIMILARITY DIMENSION, DOI DOI 10.1016/C2013-0-08173-X
[3]  
Bagnato VS, 2015, ROM REP PHYS, V67, P5
[4]   Analytic self-similar solutions of the Oberbeck-Boussinesq equations [J].
Barna, I. F. ;
Matyas, L. .
CHAOS SOLITONS & FRACTALS, 2015, 78 :249-255
[5]   Analytic solutions for the three-dimensional compressible Navier-Stokes equation [J].
Barna, I. F. ;
Matyas, L. .
FLUID DYNAMICS RESEARCH, 2014, 46 (05)
[6]   Self-Similar Solutions of Three-Dimensional Navier-Stokes Equation [J].
Barna, I. F. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (04) :745-750
[7]   Heat conduction: a telegraph-type model with self-similar behavior of solutions [J].
Barna, I. F. ;
Kersner, R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (37)
[8]  
Barna I. F., 2017, J GEN LIT THEORY APP, V11, P271
[9]   Shock wave occurrence and soliton propagation in polariton condensates [J].
Belounis, A. M. ;
Kessal, S. .
CANADIAN JOURNAL OF PHYSICS, 2017, 95 (12) :1234-1238
[10]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166