Fault-tolerant quantum error correction on near-term quantum processors using flag and bridge qubits

被引:17
作者
Lao, Lingling [1 ]
Almudever, Carmen G. [1 ]
机构
[1] Delft Univ Technol, QuTech, Delft, Netherlands
关键词
44;
D O I
10.1103/PhysRevA.101.032333
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fault-tolerant (FT) computation by using quantum error correction (QEC) is essential for realizing large-scale quantum algorithms. Devices are expected to have enough qubits to demonstrate aspects of fault tolerance in the near future. However, these near-term quantum processors will only contain a small amount of noisy qubits and allow limited qubit connectivity. Fault-tolerant schemes that not only have low qubit overhead but also comply with geometrical interaction constraints are therefore necessary. In this work, we combine flag fault tolerance with quantum circuit mapping, to enable an efficient flag-bridge approach to implement FT QEC on near-term devices. We further show an example of performing the Steane code error correction on two current superconducting processors and numerically analyze their performance with circuit level noise. The simulation results show that the QEC circuits that measure more stabilizers in parallel have lower logical error rates. We also observe that the Steane code can outperform the distance-3 surface code using flag-bridge error correction. In addition, we foresee potential applications of the flag-bridge approach such as FT computation using lattice surgery and code deformation techniques.
引用
收藏
页数:11
相关论文
共 42 条
  • [11] Quantum Error Correction with Only Two Extra Qubits
    Chao, Rui
    Reichardt, Ben W.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (05)
  • [12] Programming languages and compiler design for realistic quantum hardware
    Chong, Frederic T.
    Franklin, Diana
    Martonosi, Margaret
    [J]. NATURE, 2017, 549 (7671) : 180 - 187
  • [13] Effective fault-tolerant quantum computation with slow measurements
    DiVincenzo, David P.
    Aliferis, Panos
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (02)
  • [14] Fast Decoders for Topological Quantum Codes
    Duclos-Cianci, Guillaume
    Poulin, David
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (05)
  • [15] Fowler AG, 2015, QUANTUM INF COMPUT, V15, P145
  • [16] Surface codes: Towards practical large-scale quantum computation
    Fowler, Austin G.
    Mariantoni, Matteo
    Martinis, John M.
    Cleland, Andrew N.
    [J]. PHYSICAL REVIEW A, 2012, 86 (03)
  • [17] An Experimental Microarchitecture for a Superconducting Quantum Processor
    Fu, X.
    Rol, M. A.
    Bultink, C. C.
    van Someren, J.
    Khammassi, N.
    Ashraf, I.
    Vermeulen, R. F. L.
    de Sterke, J. C.
    Vlothuizen, W. J.
    Schouten, R. N.
    Almudever, C. G.
    DiCarlo, L.
    Bertels, K.
    [J]. 50TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2017, : 813 - 825
  • [18] Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator
    Hempel, Cornelius
    Maier, Christine
    Romero, Jonathan
    McClean, Jarrod
    Monz, Thomas
    Shen, Heng
    Jurcevic, Petar
    Lanyon, Ben P.
    Love, Peter
    Babbush, Ryan
    Aspuru-Guzik, Alan
    Blatt, Rainer
    Roos, Christian F.
    [J]. PHYSICAL REVIEW X, 2018, 8 (03):
  • [19] Surface code quantum computing by lattice surgery
    Horsman, Clare
    Fowler, Austin G.
    Devitt, Simon
    Van Meter, Rodney
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [20] Hsu J., 2018, IEEE SPECTRUM GEN TE