Varying-coefficient partially functional linear quantile regression models

被引:17
作者
Yu, Ping [1 ,2 ]
Du, Jiang [1 ,3 ]
Zhang, Zhongzhan [1 ,3 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041000, Peoples R China
[3] Collaborat Innovat Ctr Capital Social Construct &, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional data analysis; Varying-coefficient quantile model; Functional linear quantile regression model; B-splines; Functional principal component analysis; VARIABLE SELECTION; CONVERGENCE-RATES; ESTIMATORS; METHODOLOGY; PREDICTION;
D O I
10.1016/j.jkss.2017.02.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a new varying-coefficient partially functional linear quantile regression model, which combines varying-coefficient quantile regression model with functional linear quantile regression model. The functional principal component basis and regression splines are employed to estimate the slope function and varying-coefficient functions, respectively, and the convergence rates of the estimators are obtained under some regularity conditions. Simulations and an illustrative real example are presented. (C) 2017 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:462 / 475
页数:14
相关论文
共 41 条
[1]   Partial linear modelling with multi-functional covariates [J].
Aneiros, German ;
Vieu, Philippe .
COMPUTATIONAL STATISTICS, 2015, 30 (03) :647-671
[2]   Semi-functional partial linear regression [J].
Aneiros-Perez, German ;
Vieu, Philippe .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) :1102-1110
[3]  
[Anonymous], 2002, Applied functional data analysis: methods and case studies
[4]   Prediction in functional linear regression [J].
Cai, T. Tony ;
Hall, Peter .
ANNALS OF STATISTICS, 2006, 34 (05) :2159-2179
[5]   Minimax and Adaptive Prediction for Functional Linear Regression [J].
Cai, T. Tony ;
Yuan, Ming .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) :1201-1216
[6]   Quantile regression when the covariates are functions [J].
Cardot, H ;
Crambes, C ;
Sarda, P .
JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (07) :841-856
[7]   Functional linear model [J].
Cardot, H ;
Ferraty, F ;
Sarda, P .
STATISTICS & PROBABILITY LETTERS, 1999, 45 (01) :11-22
[8]   Varying-coefficient functional linear regression models [J].
Cardot, Herve ;
Sarda, Pascal .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (20) :3186-3203
[9]  
Chen H., 1991, Journal of Nonparametric Statistics, V1, P143, DOI DOI 10.1080/10485259108832516
[10]   SMOOTHING SPLINES ESTIMATORS FOR FUNCTIONAL LINEAR REGRESSION [J].
Crambes, Christophe ;
Kneip, Alois ;
Sarda, Pascal .
ANNALS OF STATISTICS, 2009, 37 (01) :35-72