Task Assignment in Mobile Edge Computing Networks: A Deep Reinforcement Learning Approach

被引:3
|
作者
Feng, Mingjie [1 ]
Zhao, Qi [1 ]
Sullivan, Nichole [1 ]
Chen, Genshe [1 ]
Pham, Khanh [2 ]
Blasch, Erik [3 ]
机构
[1] Intelligent Fus Technol Inc, 20271 Goldenrod Ln, Germantown, MD 20876 USA
[2] Air Force Res Lab, Kirtland AFB, NM 87117 USA
[3] Air Force Off Sci Res, Arlington, VA 22203 USA
来源
SENSORS AND SYSTEMS FOR SPACE APPLICATIONS XIV | 2021年 / 11755卷
关键词
Mobile edge computing; task assignment; deep reinforcement learning;
D O I
10.1117/12.2589997
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Mobile Edge Computing (MEC) is a key technology to support the emerging low-latency Internet of Things (IoT) applications. With computing servers deployed at the network edge, the computational tasks generated by mobile users can be offloaded to these MEC servers and executed there with low latency. Meanwhile, with the ever-increasing number of mobile users, the communication resource for offloading and the computational resource allocated to each user would become quite limited. As a result, it would be difficult for the MEC servers alone to process all the tasks in a timely manner. An effective approach to deal with this challenge is offloading a proportion of the tasks at MEC servers to the cloud servers, such that both types of servers are efficiently utilized to reduce latency. Given multiple MEC and cloud servers and the dynamics of communication latency, intelligent task assignment between different servers is required. In this paper, we propose a deep reinforcement learning (DRL) based task assignment scheme for MEC networks, aiming to minimize the average task processing latency. Two design parameters of task assignment are optimized, including cloud server selection and task partitioning. Such a problem is formulated as a Markov Decision Process (MDP) and solved with a DRL-based approach, which enables the edge servers to capture the system dynamics and make optimized task assignment strategies accordingly. Simulation results show that the proposed scheme can significantly lower the average task completion latency.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Deep Reinforcement Learning-Based Task Assignment for Cooperative Mobile Edge Computing
    Hsieh, Li-Tse
    Liu, Hang
    Guo, Yang
    Gazda, Robert
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (04) : 3156 - 3171
  • [2] Task migration for mobile edge computing using deep reinforcement learning
    Zhang, Cheng
    Zheng, Zixuan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 96 : 111 - 118
  • [3] Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems
    Tang, Ming
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (06) : 1985 - 1997
  • [4] Deep reinforcement learning-based online task offloading in mobile edge computing networks
    Wu, Haixing
    Geng, Jingwei
    Bai, Xiaojun
    Jin, Shunfu
    INFORMATION SCIENCES, 2024, 654
  • [5] A Deep Reinforcement Learning Approach for Collaborative Mobile Edge Computing
    Wu, Jiaqi
    Lin, Huang
    Liu, Huaize
    Gao, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 601 - 606
  • [6] Deep Reinforcement Learning Approach for UAV-Assisted Mobile Edge Computing Networks
    Hwang, Sangwon
    Park, Juseong
    Lee, Hoon
    Kim, Mintae
    Lee, Inkyu
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3839 - 3844
  • [7] iRAF: A Deep Reinforcement Learning Approach for Collaborative Mobile Edge Computing IoT Networks
    Chen, Jienan
    Chen, Siyu
    Wang, Qi
    Cao, Bin
    Feng, Gang
    Hu, Jianhao
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (04): : 7011 - 7024
  • [8] Privacy-preserving task offloading in mobile edge computing: A deep reinforcement learning approach
    Xia, Fanglue
    Chen, Ying
    Huang, Jiwei
    SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (09): : 1774 - 1792
  • [9] Mobile-Aware Online Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing Networks
    Li, Yuting
    Liu, Yitong
    Liu, Xingcheng
    Tu, Qiang
    Xie, Yi
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [10] Deep Reinforcement Learning Based Task Scheduling in Edge Computing Networks
    Qi, Fan
    Li Zhuo
    Chen Xin
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 835 - 840