COMPLETENESS: WHEN ENOUGH IS ENOUGH

被引:0
作者
Diener, Hannes [1 ]
Hendtlass, Matthew [1 ]
机构
[1] Univ Canterbury, Sch Math & Stat, Christchurch, New Zealand
来源
DOCUMENTA MATHEMATICA | 2019年 / 24卷
关键词
Constructive mathematics; computable analysis; completeness; CONTINUITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the notion of a complete enough metric space that, while classically vacuous, in a constructive setting allows for the generalisation of many theorems to a much wider class of spaces. In doing so, this notion also brings the known body of constructive results significantly closer to that of classical mathematics. Most prominently, we generalise the Kreisel-Lacome-Shoenfield Theorem/Tseytin's Theorem on the continuity of functions in recursive mathematics.
引用
收藏
页码:899 / 914
页数:16
相关论文
共 17 条
[1]  
Aczel P.H.G., 2001, 40 ROYAL SWED AC SCI
[2]  
Bishop Errett, 1985, CONSTRUCTIVE ANAL
[3]   A weak countable choice principle [J].
Bridges, D ;
Richman, F ;
Schuster, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) :2749-2752
[4]   LINEAR MAPPINGS ARE FAIRLY WELL-BEHAVED [J].
BRIDGES, D ;
ISHIHARA, H .
ARCHIV DER MATHEMATIK, 1990, 54 (06) :558-562
[5]  
Bridges Douglas S., 2006, Techniques of Constructive Analysis
[6]   Bishop's Lemma [J].
Diener, Hannes ;
Hendtlass, Matthew .
MATHEMATICAL LOGIC QUARTERLY, 2018, 64 (1-2) :49-54
[7]   Variations on a theme by Ishihara [J].
Diener, Hannes .
MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2015, 25 (07) :1569-1577
[8]   CONTINUITY AND NONDISCONTINUITY IN CONSTRUCTIVE MATHEMATICS [J].
ISHIHARA, H .
JOURNAL OF SYMBOLIC LOGIC, 1991, 56 (04) :1349-1354
[9]   CONTINUITY PROPERTIES IN CONSTRUCTIVE MATHEMATICS [J].
ISHIHARA, H .
JOURNAL OF SYMBOLIC LOGIC, 1992, 57 (02) :557-565
[10]  
ISHIHARA H, 1997, J UNIVERS COMPUT SCI, V3, P1250