LaNi1-xMnxO3 perovskite-type oxides as catalysts precursors for dry reforming of methane

被引:69
作者
Valderrama, Gustavo [1 ]
Kiennemann, Main [2 ]
Urbina de Navarro, Caribay [3 ]
Goldwasser, Mireya R. [4 ]
机构
[1] Univ Oriente, Unidad Estudios Basicos, Lab Catalisis Petr & Petroquim, Nucleo Bolivar, Calle San Simon, Estado Bolivar 8001, Venezuela
[2] Univ Louis Pasteur, ECPM, UMR 7515, Lab Mat & Procedes Catalyse, 25 Rue Becquerel, F-67087 Strasbourg 2, France
[3] Univ Cent Venezuela, Fac Ciencias, Ctr Microscopia Elect, Caracas 1040, Venezuela
[4] Univ Cent Venezuela, Escuela Quim, Ctr Catalisis Petr & Petroquim, Caracas 1040, Venezuela
关键词
Dry reforming of methane reaction; Syngas production; Perovskite-type oxide; Sol-gel resin method; Ni-0; nanoparticles; CARBON-DIOXIDE; SYNTHESIS GAS; CO; CH4; ZN; MN; NI; CU;
D O I
10.1016/j.apcata.2018.07.039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of ternary perovskite-type oxides LaNi1-xMnxO3 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized by the sol-gel resin method in propionic acid, producing solids solutions of perovskite-type structures with crystallite sizes between 15-20 nm. The LaNi1-xMnxO3 catalysts were thoroughly characterized and tested in the catalytic dry reforming of methane (DRM) reaction. It was observed that the presence of Mn in the perovskitetype oxide increases the Ni3+ to Ni-0 reduction temperature giving rise to formation of Ni-0 nanoparticles on the MnOx-La2O3 matrix. The LaNi1-xMnxO3 with x <= 0.8 showed higher activities and selectivity's towards syngas during the CH4-CO2 ( )reforming, due to in situ formation of highly dispersed Ni-0-metallic nanoparticles on the La2O2CO3-MnO-Mn2O3 solid matrix responsible for the high activity and high resistance to carbon buildup on the catalyst surface.
引用
收藏
页码:26 / 33
页数:8
相关论文
共 24 条
[1]  
[Anonymous], 2016, World Energy Resources |
[2]   An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts [J].
Arora, Shalini ;
Prasad, R. .
RSC ADVANCES, 2016, 6 (110) :108668-108688
[3]  
Atta N.F., 2016, Perovskite materials-synthesis, characterisation, properties, and applications, P107
[4]   Barium Substituted Lanthanum Manganite Perovskite for CO2 Reforming of Methane [J].
Bhavani, Annabathini Geetha ;
Kim, Won Yong ;
Lee, Jae Sung .
ACS CATALYSIS, 2013, 3 (07) :1537-1544
[5]  
BP, 2017, BP STAT REV WORLD EN
[6]   Catalytic properties of La0.8A0.2MnO3 (A = Sr, Ba, K, Cs) and LaMn0.8B0.2O3 (B = Ni, Zn, Cu) perovskites 1.: Oxidation of hydrogen and propene [J].
Buciuman, FC ;
Patcas, F ;
Menezo, JC ;
Barbier, J ;
Hahn, T ;
Lintz, HG .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2002, 35 (03) :175-183
[7]   Thermodynamic equilibrium analysis of CO2 reforming of methane: elimination of carbon deposition and adjustment of H2/CO ratio [J].
Cao, Pengfei ;
Adegbite, Stephen ;
Wu, Tao .
8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 :1864-1869
[8]   A combined thermo-kinetic analysis of various methane reforming technologies: Comparison with dry reforming [J].
Challiwala, M. S. ;
Ghouri, M. M. ;
Linke, P. ;
El-Halwagi, M. M. ;
Elbashir, N. O. .
JOURNAL OF CO2 UTILIZATION, 2017, 17 :99-111
[9]   Production of synthesis gas by carbon dioxide reforming of methane over nickel based and perovskite catalysts [J].
Chawla, Sandeep K. ;
George, Milka ;
Patel, Femina ;
Patel, Sanjay .
CHEMICAL, CIVIL AND MECHANICAL ENGINEERING TRACKS OF 3RD NIRMA UNIVERSITY INTERNATIONAL CONFERENCE ON ENGINEERING (NUICONE2012), 2013, 51 :461-466
[10]   Synthesis gas technology large-scale applications [J].
Dybkjaer, Ib ;
Aasberg-Petersen, Kim .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 94 (04) :607-612