Decomposition and reconstruction of multidimensional signals using polyharmonic pre-wavelets

被引:23
作者
Bacchelli, B
Bozzini, M
Rabut, C
Varas, ML
机构
[1] Univ Milan, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Inst Natl Sci Appl, Lab Math Ind & Phys, UMR 5640, F-31077 Toulouse, France
[3] Univ Chile, Dept Ingn Matemat, Ctr Modelamiento Matemat, Santiago, Chile
关键词
pre-wavelet; multiresolution; polyharmonic splines; multidimensional;
D O I
10.1016/j.acha.2004.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we build a multidimensional wavelet decomposition based on polyharmonic B-splines. The prewavelets are polyharmonic splines and so not tensor products of univariate wavelets. Explicit construction of the filters specified by the classical dyadic scaling relations is given and the decay of the functions and the filters is shown. We then design the decomposition/recomposition algorithm by means of downsampling/upsampling and convolution products. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:282 / 299
页数:18
相关论文
共 27 条
[1]  
[Anonymous], 1972, DISTRIBUTIONS ANALYS
[2]  
[Anonymous], 1993, Ten Lectures of Wavelets
[3]  
BACCHELLI B, 2003, CURVES SURFACES FITT, P21
[4]  
BACCHELLI B, 2003, IN PRESS INT J WAVEL
[5]   CARDINAL INTERPOLATION WITH DIFFERENCES OF TEMPERED FUNCTIONS [J].
CHUI, CK ;
WARD, JD ;
JETTER, K .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (12) :35-48
[6]  
Dahmen W., 1997, Acta Numerica, V6, P55, DOI 10.1017/S0962492900002713
[7]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[8]   ON THE CONSTRUCTION OF MULTIVARIATE (PRE)WAVELETS [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :123-166
[9]  
Devore R. A., 1992, Acta Numerica, DOI [DOI 10.1017/S0962492900002233, 10.1017/S0962492900002233]
[10]  
DUCHON J, 1976, ANAL NUMER, V10, P345