Convergence of the Weierstrass-Mandelbrot process to fractional Brownian motion

被引:15
作者
Pipiras, V [1 ]
Taqqu, MS [1 ]
机构
[1] Boston Univ, Dept Math, Boston, MA 02215 USA
关键词
Weierstrass function; Weierstrass-Mandelbrot process; fractional Brownian motion; functional central limit theorem; strong mixing; martingale difference sequences;
D O I
10.1142/S0218348X00000408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we develop Mandelbrot's idea that Weierstrass's nowhere differentiable function can be modified and randomized to approximate fractional Brownian motion (FBM). Our approach covers the convergence of processes of a more general type and allows us to consider different dependence structures in the above randomization.
引用
收藏
页码:369 / 384
页数:16
相关论文
共 14 条
[1]  
[Anonymous], MATEMATISCHE WERKE
[2]   ON THE WEIERSTRASS-MANDELBROT FRACTAL FUNCTION [J].
BERRY, MV ;
LEWIS, ZV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1980, 370 (1743) :459-484
[3]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[4]  
BRADLEY RC, 1986, DEPENDENCE PROBABILI, P165
[5]  
GAENSSLER P, 1986, DEPENDENCE PROBABILI, P303
[6]   Weierstrass's non-differentiable function [J].
Hardy, G. H. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1916, 17 :301-325
[7]  
JACOD PJ, 1987, LIMIT THEOREMS STOCH
[8]   WEIGHTED SUMS OF IID RANDOM-VARIABLES ATTRACTED TO INTEGRALS OF STABLE PROCESSES [J].
KASAHARA, Y ;
MAEJIMA, M .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (01) :75-96
[9]  
Mandelbrot BB., 1977, FRACTAL GEOMETRY NAT
[10]  
Peligrad M., 1986, DEPENDENCE PROBABILI, P193