Critical properties of the measurement-induced transition in random quantum circuits

被引:257
作者
Zabalo, Aidan [1 ]
Gullans, Michael J. [2 ]
Wilson, Justin H. [1 ]
Gopalakrishnan, Sarang [3 ,4 ]
Huse, David A. [2 ,5 ]
Pixley, J. H. [1 ]
机构
[1] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10314 USA
[4] CUNY, Initiat Theoret Sci, Grad Ctr, New York, NY 10016 USA
[5] Inst Adv Study, Princeton, NJ 08540 USA
关键词
DYNAMICS;
D O I
10.1103/PhysRevB.101.060301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We numerically study the measurement-driven quantum phase transition of Haar-random quantum circuits in 1 + 1 dimensions. By analyzing the tripartite mutual information we are able to make a precise estimate of the critical measurement rate p(c) = 0.17(1). We extract estimates for the associated bulk critical exponents that are consistent with the values for percolation, as well as those for stabilizer circuits, but differ from previous estimates for the Haar-random case. Our estimates of the surface order parameter exponent appear different from those for stabilizer circuits or percolation, but we cannot definitively rule out the scenario where all exponents in the three cases match. Moreover, in the Haar case the prefactor for the entanglement entropies S-n depends strongly on the Renyi index n; for stabilizer circuits and percolation this dependence is absent. Results on stabilizer circuits are used to guide our study and identify measures with weak finite-size effects. We discuss how our numerical estimates constrain theories of the transition.
引用
收藏
页数:5
相关论文
共 36 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]  
Bao Y., ARXIV190804305
[3]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[4]   Entanglement spectrum in one-dimensional systems [J].
Calabrese, Pasquale ;
Lefevre, Alexandre .
PHYSICAL REVIEW A, 2008, 78 (03)
[5]   Linking numbers for self-avoiding loops and percolation: Application to the spin quantum Hall transition [J].
Cardy, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (16) :3507-3510
[6]   CONFORMAL-INVARIANCE AND SURFACE CRITICAL-BEHAVIOR [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1984, 240 (04) :514-532
[7]  
Carmichael H. J., 1993, An Open Systems Approach to Quantum Optics
[8]   Unitary-projective entanglement dynamics [J].
Chan, Amos ;
Nandkishore, Rahul M. ;
Pretko, Michael ;
Smith, Graeme .
PHYSICAL REVIEW B, 2019, 99 (22)
[9]   Solution of a Minimal Model for Many-Body Quantum Chaos [J].
Chan, Amos ;
De Luca, Andrea ;
Chalker, J. T. .
PHYSICAL REVIEW X, 2018, 8 (04)
[10]   Evolution of Entanglement Spectra under Generic Quantum Dynamics [J].
Chang, Po-Yao ;
Chen, Xiao ;
Gopalakrishnan, Sarang ;
Pixley, J. H. .
PHYSICAL REVIEW LETTERS, 2019, 123 (19)