Quantum Bit Commitment with Application in Quantum Zero-Knowledge Proof

被引:13
作者
Yan, Jun [1 ]
Weng, Jian [1 ]
Lin, Dongdai [2 ]
Quan, Yujuan [1 ]
机构
[1] Jinan Univ, Guangzhou 510632, Guangdong, Peoples R China
[2] Chinese Acad Sci, State Key Lab Informat Secur, Inst Informat Engn, Beijing 100093, Peoples R China
来源
ALGORITHMS AND COMPUTATION, ISAAC 2015 | 2015年 / 9472卷
关键词
Bit commitment; Zero-knowledge proof; Quantum cryptography; Quantum complexity theory; PERFECT;
D O I
10.1007/978-3-662-48971-0_47
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we study formalization and construction of non-interactive statistically binding quantum bit commitment scheme (QBC), as well as its application in quantum zero-knowledge (QZK) proof. We explore the fully quantum model, where both computation and communication could be quantum. While most of the proofs here are straightforward based on previous works, we have two technical contributions. First, we show how to use reversibility of quantum computation to construct non-interactive QBC. Second, we identify new issue caused by quantum binding in security analysis and give our idea to circumvent it, which may be found useful elsewhere.
引用
收藏
页码:555 / 565
页数:11
相关论文
共 21 条
[1]  
Adcock M., 2002, STACS 2002. 19th Annual Symposium on Theoretical Aspects of Computer Science. Proceedings (Lecture Notes in Computer Science Vol.2285), P323
[2]   Quantum Attacks on Classical Proof Systems The Hardness of Quantum Rewinding [J].
Ambainis, Andris ;
Rosmanis, Ansis ;
Unruh, Dominique .
2014 55TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2014), 2014, :474-483
[3]  
[Anonymous], 2001, FDN CRYPTOGRAPHY BAS
[4]  
Blum M., 1986, P INT C MATH CIT, V1, P2
[5]  
Chailloux A, 2011, LECT NOTES COMPUT SC, V6755, P73, DOI 10.1007/978-3-642-22006-7_7
[6]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[7]  
Crépeau C, 2004, LECT NOTES COMPUT SC, V2951, P374
[8]  
Dumais P, 2000, LECT NOTES COMPUT SC, V1807, P300
[9]  
GOLDREICH O, 1991, J ACM, V38, P691, DOI 10.1145/116825.116852
[10]   A pseudorandom generator from any one-way function [J].
Hästad, J ;
Impagliazzo, R ;
Levin, LA ;
Luby, M .
SIAM JOURNAL ON COMPUTING, 1999, 28 (04) :1364-1396