On products of sln characters and support containment

被引:11
作者
Dobrovolska, Galyna [1 ]
Pylyavskyy, Pavlo [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Schur functions; Horn-Klyachko inequalities;
D O I
10.1016/j.jalgebra.2006.10.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda, mu, nu and rho be dominant weights of Sl(n) satisfying lambda+ mu = nu + rho. Let V-lambda denote the highest weight module corresponding to lambda. Lam, Postnikov, Pylyavskyy conjectured a sufficient condition for V-lambda circle times V-mu to be contained in V-nu circle times V-rho as Sl(n)-modules. In this note we prove a weaker version of the conjecture. Namely we prove that under the conjectured conditions every irreducible Sl(n)-module which appears in the decomposition of V-lambda circle times V-mu does appear in the decomposition of V-nu circle times V-rho. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:706 / 714
页数:9
相关论文
共 15 条
[1]   On the nature of critical heat flux in microchannels [J].
Bergles, AE ;
Kandlikar, SG .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (01) :101-107
[2]   Eigenvalues, invariant factors, highest weights, and Schubert calculus [J].
Fulton, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 37 (03) :209-249
[3]  
HUMPHREYS J, 1997, INTRO ALGEBRAS REPRE, V9
[4]   Random walks on symmetric spaces and inequalities for matrix spectra [J].
Klyachko, AA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 319 (1-3) :37-59
[5]   The honeycomb model of GLn(C) tensor products I:: Proof of the saturation conjecture [J].
Knutson, A ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1055-1090
[6]  
LAM T, UNPUB SOME POSITIVIT
[7]  
LAM T, IN PRESS AM J MATH
[8]  
LAM T, ARXIV MATH CO0501246
[9]  
LAM T, ARXIV MATH CO0505273
[10]   Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties [J].
Lascoux, A ;
Leclerc, B ;
Thibon, JY .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (02) :1041-1068