A NITSCHE FINITE ELEMENT METHOD FOR DYNAMIC CONTACT: 1. SPACE SEMI-DISCRETIZATION AND TIME-MARCHING SCHEMES

被引:18
作者
Chouly, Franz [1 ]
Hild, Patrick [2 ]
Renard, Yves [3 ]
机构
[1] Univ Franche Comte, UMR CNRS 6623, Lab Math Besancon, F-25030 Besancon, France
[2] Univ Toulouse 3, UMR CNRS 5219, Inst Math Toulouse, F-31062 Toulouse 9, France
[3] Univ Lyon, CNRS, INSA Lyon, ICJ UMR5208,LaMCoS UMR5259, F-69621 Villeurbanne, France
关键词
Unilateral contact; elastodynamics; finite elements; Nitsche's method; time-marching schemes; stability; MASS REDISTRIBUTION METHOD; CONSERVING ALGORITHMS; UNILATERAL CONSTRAINT; CONVERGENCE; ENERGY; APPROXIMATION; FORMULATION; EXISTENCE; IMPACT;
D O I
10.1051/m2an/2014041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new approximation of elastodynamic frictionless contact problems based both on the finite element method and on an adaptation of Nitsche's method which was initially designed for Dirichlet's condition. A main interesting characteristic is that this approximation produces well-posed space semi-discretizations contrary to standard finite element discretizations. This paper is then mainly devoted to present an analysis of the space semi-discretization in terms of consistency, well-posedness and energy conservation, and also to study the well-posedness of some time-marching schemes (theta-scheme, Newmark and a new hybrid scheme). The stability properties of the schemes and the corresponding numerical experiments can be found in a second paper [F. Chouly, P. Hild and Y. Renard, A Nitsche finite element method for dynamic contact. 2. Stability analysis and numerical experiments. ESAIM: M2AN 49 (2015) 503-528.].
引用
收藏
页码:481 / 502
页数:22
相关论文
共 49 条
[1]   Existence of solutions for a class of impact problems without viscosity [J].
Ahn, Jeongho ;
Stewart, David E. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) :37-63
[2]  
[Anonymous], 1975, Pure and Applied Mathematics
[3]  
[Anonymous], 1989, SIAM STUDIES APPL MA
[4]  
[Anonymous], 2002, Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis
[5]   Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems [J].
Armero, F ;
Petocz, E .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 158 (3-4) :269-300
[6]   An added-mass free semi-implicit coupling scheme for fluid-structure interaction [J].
Astorino, Matteo ;
Chouly, Franz ;
Fernandez, Miguel A. .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (1-2) :99-104
[7]  
Aubin J.-P., 1984, Grundlehren der mathematischen Wissenschaften, V264
[8]   A finite element method for domain decomposition with non-matching grids [J].
Becker, R ;
Hansbo, P ;
Stenberg, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :209-225
[9]  
BRENNER S. C., 2007, TEXTS APPL MATH, V15
[10]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&