Effect of B-site doping on Sr2PdO3 perovskite catalyst activity for non-enzymatic determination of glucose in biological fluids

被引:17
作者
Atta, Nada F. [1 ]
Galal, Ahmed [1 ]
El-Ads, Ekram H. [1 ]
机构
[1] Cairo Univ, Fac Sci, Dept Chem, Giza 12613, Egypt
关键词
Non-enzymatic glucose sensor; Dopant type; Real serum sample; Au-doped strontium palladium nano-perovskite; Amperometric measurements; Long term stability; GOLD NANOPARTICLES; PALLADIUM NANOPARTICLES; HYDROGEN-PEROXIDE; GRAPHENE OXIDE; ASCORBIC-ACID; A-SITE; ELECTRODE; CARBON; NEUROTRANSMITTERS; ELECTROCHEMISTRY;
D O I
10.1016/j.jelechem.2019.113523
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
For the first time, a sensitive, selective and durable non-enzymatic glucose electrode was introduced based on Au-doped strontium palladium nano-perovskite modified graphite sensor. The effect of the metal dopant type in B site of Sr2PdO3 perovskite; (M: Ni2+, Cu2+, Au3+, and Pt2+) was evaluated. Sr2Pd0.7Au0.3O3 modified graphite sensor with molar concentration of dopant 0.3 showed the highest electro-catalytic activity for non-enzymatic glucose sensing. The high catalytic activity of Sr2Pd0.7Au0.3O3 is attributed to the inclusion of highly conductive Au3+ dopant, generation of extra oxygen vacancies, enhancement of electronic and ionic conductivity, and stabilization of the orthorhombic perovskite structure. The proposed non-enzymatic glucose sensor offered high performance in terms of amperometric measurements in real serum samples, wide concentration range; 0.2 mu M-100 mu M, high sensitivity; 1.44 x 10(4) mu A mM(-1) cm(-2), low detection limit; 2.11 nM and anti-interference ability. Also, this sensor offered long term stability and good shelf time up to one month with repetitive usage.
引用
收藏
页数:15
相关论文
共 76 条
[51]   A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles [J].
Suntivich, Jin ;
May, Kevin J. ;
Gasteiger, Hubert A. ;
Goodenough, John B. ;
Shao-Horn, Yang .
SCIENCE, 2011, 334 (6061) :1383-1385
[52]   Perovskite membrane of La1-xSrxTi1-yFeyO3-δ for partial to syngas [J].
Takahashi, Yosuke ;
Kawahara, Akihiro ;
Suzuki, Takehiro ;
Hirano, Masayoshi ;
Shin, Woosuck .
SOLID STATE IONICS, 2010, 181 (5-7) :300-305
[53]   Oxyfluoride Chemistry of Layered Perovskite Compounds [J].
Tsujimoto, Yoshihiro ;
Yamaura, Kazunari ;
Takayama-Muromachi, Eiji .
APPLIED SCIENCES-BASEL, 2012, 2 (01) :206-219
[54]   Dimensional reduction: A practical formalism for manipulating solid structures [J].
Tulsky, EG ;
Long, JR .
CHEMISTRY OF MATERIALS, 2001, 13 (04) :1149-1166
[55]   Optimizing Perovskites for the Water-Splitting Reaction [J].
Vojvodic, Aleksandra ;
Norskov, Jens K. .
SCIENCE, 2011, 334 (6061) :1355-1356
[56]   A novel route to prepare LaNiO3 perovskite-type oxide nanofibers by electrospinning for glucose and hydrogen peroxide sensing [J].
Wang, Bijun ;
Gu, Shuqing ;
Ding, Yaping ;
Chu, Yuliang ;
Zhang, Zhen ;
Ba, Xi ;
Zhang, Qiaolin ;
Li, Xinru .
ANALYST, 2013, 138 (01) :362-367
[57]   Preparation of nickel nanoparticle/graphene composites for non-enzymatic electrochemical glucose biosensor applications [J].
Wang, Bo ;
Li, Songmei ;
Liu, Jianhua ;
Yu, Mei .
MATERIALS RESEARCH BULLETIN, 2014, 49 :521-524
[58]   Copper Oxide-Cobalt Nanostructures/Reduced Graphene Oxide/Biomass-Derived Macroporous Carbon for Glucose Sensing [J].
Wang, Li ;
Xu, Lijuan ;
Zhang, Yayun ;
Yang, Han ;
Miao, Longfei ;
Peng, Canwei ;
Song, Yonghai .
CHEMELECTROCHEM, 2018, 5 (03) :501-506
[59]   Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor [J].
Wang, Qiyu ;
Cui, Xiaoqiang ;
Chen, Jianli ;
Zheng, Xianliang ;
Liu, Chang ;
Xue, Tianyu ;
Wang, Haitao ;
Jin, Zhao ;
Qiao, Liang ;
Zheng, Weitao .
RSC ADVANCES, 2012, 2 (15) :6245-6249
[60]   Electrospun palladium (IV)-doped copper oxide composite nanofibers for non-enzymatic glucose sensors [J].
Wang, Wei ;
Li, Zhenyu ;
Zheng, Wei ;
Yang, Jie ;
Zhang, Hongnan ;
Wang, Ce .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (09) :1811-1814