Human Body as a Power Source for Biomechanical Energy Scavenging Based on Electrode-Free Triboelectric Nanogenerators

被引:9
|
作者
Zhang, Hulin [1 ,2 ,3 ]
Cui, Xiaojing [1 ,2 ]
Cao, Shengli [1 ,2 ]
Zhang, Qiang [1 ,2 ]
Sang, Shengbo [1 ,2 ]
Zhang, Wendong [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Micro Nano Syst Res Ctr, Key Lab Adv Transducers & Intelligent Control Sys, Minist Educ, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Coll Informat & Comp, Taiyuan 030024, Shanxi, Peoples R China
[3] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
energy harvesting; biomechanical devices; human body; nanogenerators; triboelectric devices; GENERATING ELECTRICITY; HARVESTING ENERGY; SHOE INSOLE; WALKING; DRIVEN; MOBILE;
D O I
10.1002/ente.201800162
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We demonstrate a human-body-based electrode-free triboelectric nanogenerator that is capable of harvesting biomechanical energy by triboelectrification between the human body and a polymer cloth. A polytetrafluoroethylene (PTFE) film with nanostructured surface serves as one triboelectric layer, while the human body plays a dual role of both a triboelectric layer and natural electrode in electricity generation. Due to the appropriate conductivity of the human body, the generated electricity can be acquired from any part of the human body, and as the human body can serve as a natural electrode, our generator nearly can harvest energy from any human motion. The output voltage can reach 25 V during typical running at a loading resistance of 50 M omega, which is sufficient to light up LEDs. Owing to the adaptive configuration, our designed TENGs can be potentially applied in self-powered emergency situations, in outdoor sports, or for field survival.
引用
收藏
页码:2053 / 2057
页数:5
相关论文
共 50 条
  • [21] Toward 3D double-electrode textile triboelectric nanogenerators for wearable biomechanical energy harvesting and sensing
    Li, Meiqi
    Xu, Bingang
    Li, Zihua
    Gao, Yuanyuan
    Yang, Yujue
    Huang, Xinxin
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [22] A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control
    Long Liu
    Qiongfeng Shi
    Chengkuo Lee
    Nano Research, 2021, 14 : 4227 - 4235
  • [23] Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing
    Wang, Yitong
    Li, Zihua
    Fu, Hong
    Xu, Bingang
    NANO ENERGY, 2023, 115
  • [24] Natural Silkworm Cocoon-Based Hierarchically Architected Composite Triboelectric Nanogenerators for Biomechanical Energy Harvesting
    Wang, Qian
    Xu, Bingang
    Huang, Junxian
    Tan, Di
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (07) : 9182 - 9192
  • [25] Universal Analysis Method for Metamaterial-Based Wireless Power Transfer with Arbitrary Energy Source Waveforms: Application to Triboelectric Nanogenerators
    Xu, Liangquan
    Lu, Jiaqi
    Wu, Jianhui
    Li, Jie
    Hazarika, Dinku
    Zhang, Chi
    Xuan, Weipeng
    Jin, Hao
    Luo, Jikui
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (06) : 9243 - 9252
  • [26] A triboelectric energy harvester using human biomechanical motion for low power electronics
    Puneet Khushboo
    Bulletin of Materials Science, 2019, 42
  • [27] Hybrid All-in-One Power Source Based on High-Performance Spherical Triboelectric Nanogenerators for Harvesting Environmental Energy
    Xu, Lingyi
    Xu, Liang
    Luo, Jianjun
    Yan, Ying
    Jia, Bei-Er
    Yang, Xiaodan
    Gao, Yihua
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2020, 10 (36)
  • [28] A triboelectric energy harvester using human biomechanical motion for low power electronics
    Khushboo
    Azad, Puneet
    BULLETIN OF MATERIALS SCIENCE, 2019, 42 (03)
  • [29] Flexible and Transparent Triboelectric Nanogenerators Based on Polyoxometalate-Modified Polydimethylsiloxane Composite Films for Harvesting Biomechanical Energy
    Su, Ying
    Ma, Chunhui
    Chen, Weilin
    Xu, Xueying
    Tang, Qingxin
    ACS APPLIED NANO MATERIALS, 2022, 5 (10) : 15369 - 15377
  • [30] Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting
    Jing, Titao
    Xu, Bingang
    Yang, Yujue
    Li, Meiqi
    Gao, Yuanyuan
    NANO ENERGY, 2020, 78 (78)