On the factorability of polynomial identities of upper block triangular matrix algebras graded by cyclic groups

被引:4
作者
Di Vincenzo, Onofrio Mario [1 ]
da Silva Pinto, Marcos Antonio [2 ]
Tomaz da Silva, Viviane Ribeiro [2 ]
机构
[1] Univ Basilicata, Dipartimento Matemat Informat & Econ, Via Ateneo Lucano 10, I-85100 Potenza, Italy
[2] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Ave Antonio Carlos 6627, BR-30161970 Belo Horizonte, MG, Brazil
关键词
Factorability; Graded algebras; Graded polynomial identities; G-regularity; Invariance subgroups; MINIMAL VARIETIES;
D O I
10.1016/j.laa.2020.05.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be an algebraically closed field of characteristic zero and G be an arbitrary finite cyclic group. In this paper, given an m-tuple (A(1), ..., A(m)) of finite dimensional G-simple algebras, we focus on the study of the factorability of the T-G-ideals Id(G)((UT (A(1), ..., A(m)),(alpha) over tilde)) of the G-graded upper block triangular matrix algebras UT (A(1), ..., A(m)) endowed with elementary G-gradings induced by some maps (alpha) over tilde. When G is a cyclic p-group we prove that the factorability of the ideal Id(G)((UT (A(1), ..., A(m)), (alpha) over tilde) is equivalent to the G-regularity of all (except for at most one) the G-simple components A1, ..., A(m) as well to the existence of a unique isomorphism class of (alpha) over tilde -admissible elementary G-gradings for UT(A(1), ..., A(m)) Moreover, we present some necessary and sufficient conditions to the factorability of Ida ((UT(A(1), A(2)), (alpha) over tilde)), even in case G is not a p-group, with some stronger assumptions on the gradings of the algebras A(1) and A(2). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:311 / 337
页数:27
相关论文
共 12 条
  • [1] Aljadeff E, 2014, T AM MATH SOC, V366, P1749
  • [2] The factorability of T2-ideals of minimal supervarieties
    Avelar, Danilo Vilela
    Di Vincenzo, Onofrio Mario
    Tomaz da Silva, Viviane Ribeiro
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (04) : 1595 - 1607
  • [3] Finite-dimensional simple graded algebras
    Bahturin, Yu. A.
    Zaicev, M. V.
    Sehgal, S. K.
    [J]. SBORNIK MATHEMATICS, 2008, 199 (7-8) : 965 - 983
  • [4] Block-triangular matrix algebras and factorable ideals of graded polynomial identities
    Di Vincenzo, OM
    La Scala, R
    [J]. JOURNAL OF ALGEBRA, 2004, 279 (01) : 260 - 279
  • [5] A characterization of minimal varieties of Zp-graded PI algebras
    Di Vincenzo, Onofrio Mario
    Tomaz da Silva, Viviane Ribeiro
    Spinelli, Ernesto
    [J]. JOURNAL OF ALGEBRA, 2019, 539 : 397 - 418
  • [6] Graded polynomial identities on upper block triangular matrix algebras
    Di Vincenzo, Onofrio Mario
    Spinelli, Ernesto
    [J]. JOURNAL OF ALGEBRA, 2014, 415 : 50 - 64
  • [7] Codimension growth and minimal superalgebras
    Giambruno, A
    Zaicev, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (12) : 5091 - 5117
  • [8] Minimal varieties of algebras of exponential growth
    Giambruno, A
    Zaicev, M
    [J]. ADVANCES IN MATHEMATICS, 2003, 174 (02) : 310 - 323
  • [9] Giambruno A., 2005, POLYNOMIAL IDENTITIE
  • [10] Kemer AR, 1991, TRANSLATION MATH MON, V87